Skip to main content
Log in

Transverse Vibrations of an Elastic Stepped Cylindrical Shell with Cracks

  • Published:
International Applied Mechanics Aims and scope

The transverse axisymmetric vibrations of an elastic stepped cylindrical shell with stable cracks in the inside corner of the steps are studied. The effect of the cracks on the vibrations of the shell is evaluated considering local flexibility and the compliance function, which is related to the stress intensity factor of linear fracture mechanics.Amatrix solution for an arbitrary number of cracks is found. The effect of the location and length of cracks on the transverse axisymmetric vibrations of elastic one- and two-step cylindrical shells is evaluated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Vlaikov and A. Ya. Grigorenko, ”Free axisymmetric vibrations of a hollow cylinder with various end conditions,” Prikl. Mekh., 26, No. 5, 109–111 (1990).

    Google Scholar 

  2. A. N. Guz, I. S. Chernyshenko, Val. N. Chekhov, Vik. N. Chekhov, and K. I. Shnerenko, Cylindrical Shells Weakened by Holes [in Russian], Naukova Dumka, Kyiv (1974).

    Google Scholar 

  3. V. V. Panasyuk, Fundamentals of Fracture Mechanics, Vol. 1 of the 10-volume series Fracture Mechanics and Strength of Materials [in Russian], Naukova Dumka, Kyiv (1988).

    Google Scholar 

  4. E. Yu. Bashchuk and V. Yu. Boichuk, “Influence of the inhomogeneity of the principal stress state on the critical loads of a plate with a crack,” Int. Appl. Mech., 49, No. 3, 328–336 (2013).

    Article  ADS  Google Scholar 

  5. Y. G. Chondros and S. D. Dimarogonas, “Identification of cracks in welded joints of complex structures,” J. Sound Vibr., 69, No. 4, 531–538 (1980).

    Article  ADS  Google Scholar 

  6. A. D. Dimarogonas, “Vibration of cracked structures: a state of the art review,” Eng. Fact. Mech., 55, 831–857 (1996).

    Article  Google Scholar 

  7. M. B. Dovzhik and V. M. Nazarenko, “Fracture of a material compressed along a periodic set of closely spaced cracks,” Int. Appl. Mech., 48, No. 6, 710–718 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  8. Ya. M. Grigorenko, A. Ya. Grigorenko, and L. I. Zakhariichenko, “Stress–strain analysis of orthotropic closed and open noncircular cylindrical shells,” Int. Appl. Mech., 41, No. 7, 778 –785 (2005).

    Article  ADS  Google Scholar 

  9. P. Gudmundson, “Eigenfrequency changes of structures due to cracks, notches or other geometrical changes,” J. Mech. Phys. Solids, 30, No. 5, 339–353 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. L. Kikidis and C. A. Papadopoulos, “Slenderness ratio effect on cracked beam,” J. Sound Vibr., 155, No. 1, 1–11 (1992).

    Article  ADS  MATH  Google Scholar 

  11. Yu. A. Kostandov, P. V. Makarov, M. O. Eremin, I. Yu. Smolin, and I. E. Shipovskii, “Fracture of compressed brittle bodies with a crack,” Int. Appl. Mech., 49, No. 1, 95–101 (2013).

    Article  ADS  Google Scholar 

  12. J. Lellep and E. Sakkov, “Buckling of stepped composite columns,” Mech. Comp. Mater., 42, No. 1, 63–72 (2006).

    Article  Google Scholar 

  13. R. Y. Liang, F. K. Choy, and J. Hu, “Detection of cracks in beam structures using measurements of natural frequencies,” J. Franklin Inst., 328, No. 4, 505–518 (1991).

    Article  ADS  MATH  Google Scholar 

  14. R. Y. Liang, J. Hu, and F. Choy, “Theoretical study of crack-induced eigenfrequency changes on beam structures,” J. Eng. Mech., 118, No. 2, 384–395 (1992).

    Article  Google Scholar 

  15. Y. Murakami, Stress Intensity Factor Handbook, I–II, Pergamon Press, Oxford (1992).

    Google Scholar 

  16. B. P. Nandwana and S. K. Marti, “Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies,” J. Sound Vibr., 203, No. 3, 435–446 (1997).

    Article  ADS  Google Scholar 

  17. Y. Narkis and E. Elmanah, “Crack identification in a cantilever beam under uncertain end conditions,” Int. J. Mech. Sci., 38, No. 5, 499–507 (1996).

    Article  MATH  Google Scholar 

  18. P. F. Rizos, N. Aspragathos, and A. F. Dimarogonas, “Identification of crack location and magnitude in a cantilever beam from the vibration modes,” J. Sound Vibr., 138, No. 3, 381–388 (1990).

    Article  ADS  Google Scholar 

  19. M.-H. Shin and C. Pierre, “Natural modes of Bernoulli–Euler beams with symmetric cracks,” J. Sound Vibr., 138, No. 1, 115–134 (1990).

    Article  ADS  Google Scholar 

  20. H. Tada, P. V. Paris, and G. T. Irwin, Stress Analysis of Cracks Handbook, ASME, New York (2000).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lellep.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 50, No. 2, pp. 60–74, March–April 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lellep, J., Roots, L. Transverse Vibrations of an Elastic Stepped Cylindrical Shell with Cracks. Int Appl Mech 50, 159–170 (2014). https://doi.org/10.1007/s10778-014-0620-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-014-0620-3

Keywords

Navigation