International Applied Mechanics

, Volume 50, Issue 1, pp 75–78 | Cite as

The Reaction of an Elastic Cantilever–Rod System to Quasistatic and Shock-Wave Loads

  • I. I. Anik’ev
  • V. A. Maksimyuk
  • M. I. Mikhailova
  • E. A. Sushchenko

The deformation of an elastic cantilever–rod system when a shock wave or quasi-static load acts on the cantilever is studied experimentally. The quasistatic and nonstationary strains were measured using a PC with an LMS SCADAS Mobile high-precision eight-channel front-end (Belgium). It is revealed that the theoretical analysis of such problems requires a nonlinear problem statement


Cantilever support rod experimental study quasistatic loading plane shock wave buckling load 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. I. Anik’ev, A. N. Guz, V. V. Konovalenko, M. I. Mikhailova, A. V. Moroz, and A. S. Spisovskii, and E. A. Sushchenko, “Deformation of a three-layer glass-reinforced plastic panel with a cellular filler under the action of static and shock loads,” Strength of Materials, 15, No. 7, 994–1000 (1983).CrossRefGoogle Scholar
  2. 2.
    I. I. Anik’ev, M. I. Mikhailova, A. S. Spisovskii, and E. A. Sushchenko, “Nonstationary deformation of a beam–rod system under the action of a shock wave,” in: Abstracts of 6th All-Union Congr. on Theoretical and Applied Mechanics [in Russian], Tashkent (1986), p. 42.Google Scholar
  3. 3.
    K. G. Golovko, P. Z. Lugovoi, and V. F. Meish, Dynamics of Inhomogeneous Shells under Nonstationary Loads [in Russian], Poligr. Tsentr “Kievskii Universitet,” Kyiv (2012).Google Scholar
  4. 4.
    À. N. Guz, V. À. Zarutskii, et al., Experimental Research of Thin-Walled Structures [in Russian], Naukova Dumka, Kyiv (1984).Google Scholar
  5. 5.
    I. I. Anik’ev, M. I. Mikhailova, and E. A. Sushchenko, “Experimental determination of the reaction of an elastic cantilever—rod system to a shock wave,” Int. Appl. Mech., 48, No. 6, 736–740 (2012).CrossRefADSGoogle Scholar
  6. 6.
    I. I. Anik’ev, V. A. Maksimyuk, M. I. Mikhailova, and E. A. Sushchenko, “Incidence of a shock wave on a cantilever plate coupled with an elastic rod,” Int. Appl. Mech., 49, No. 4, 482–487 (2013).CrossRefADSGoogle Scholar
  7. 7.
    I. I. Anik’ev, V. A. Maksimyuk, M. I. Mikhailova, and E. A. Sushchenko, “Nonstationary behavior of cantilever–rod system under nearly critical loads,” Int. Appl. Mech., 49, No. 5, 570–575 (2013).CrossRefADSGoogle Scholar
  8. 8.
    N. A. Fomin, “110 years of experiments on shock tubes,” J. Eng. Phys. Thermophys., 83, No. 6, 1118–1135 (2010).CrossRefGoogle Scholar
  9. 9.
    Z. Gronostajski and S. Polak, “Quasi-static and dynamic deformation of double-hat thinwalled elements of vehicle controlled body crushing zones joined by clinching,” Archiv. Civil Mech. Eng., 8, No. 2, 57–65 (2008).CrossRefGoogle Scholar
  10. 10.
    Z. Jing, T. Cheng-wen, R. Yu, W. Fu-chi, and C. Hong-nian, “Quasi-static and dynamic tensile behaviors in electron beam welded Ti-6Al-4 V alloy,” Trans. Nonferrous Met. Soc. China, 21, No. 1, 39–44 (2011).CrossRefGoogle Scholar
  11. 11.
    P. O. K. Krehl, History of Shock Waves, Explosions and Impact: A Chronological and Biographical Reference, Springer-Verlag, Berlin (2008).Google Scholar
  12. 12.
    R. Menig, M. H. Meyers, M. A. Meyers, and K. S. Vecchio, “Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells,” Acta Mater., 48, No. 9, 2383–2398 (2000).CrossRefGoogle Scholar
  13. 13.
    L. Pùst, “Dynamic deformations and stresses of beams connected by damping element,” Eng. Mech., 16, No. 3, 185–196 (2009).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • I. I. Anik’ev
    • 1
  • V. A. Maksimyuk
    • 1
  • M. I. Mikhailova
    • 1
  • E. A. Sushchenko
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations