Advertisement

International Applied Mechanics

, Volume 49, Issue 6, pp 702–714 | Cite as

Stability and Postcritical Behavior of Corrugated Cylindrical Panels Under External Pressure

  • N. P. Semenyuk
  • N. B. Zhukova
Article

The problem of the deformation of longitudinally corrugated long open cylindrical shells under external pressure is considered. It is solved using the third-order Timoshenko–Mindlin theory of shells. It is shown that the refined equations should be used to analyze the postcritical behavior of shells

Keywords

longitudinally corrugated long open cylindrical shell Timoshenko–Mindlin theory of shells stability postcritical behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Bazhenov, M. P. Semenyuk, and V. M. Trach, Nonlinear Deformation, Stability, and Postcritical Behavior of Anisotropic Shells [in Ukrainian], Karavela, Kyiv (2010).Google Scholar
  2. 2.
    G. L. Vanin, N. P. Semenyuk, and R. F. Emel’yanov, Stability of Shells Made of Reinforced Materials [in Russian], Naukova Dumka, Kyiv (1978).Google Scholar
  3. 3.
    E. I. Grigolyuk and V. I. Shalashilin, Problems of Nonlinear Deformation: Parameter Continuation Method in Nonlinear Problems of Solid Mechanics [in Russian], Nauka, Moscow (1988).Google Scholar
  4. 4.
    V. I. Gulyaev, V. A. Bazhenov, and E. A. Gotsulyak, Stability of Nonlinear Mechanical Systems [in Russian], Vyshcha Shkola, Lviv (1982).Google Scholar
  5. 5.
    V. V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity, Dover, New York (1999).Google Scholar
  6. 6.
    V. V. Novozhilov, Thin Shell Theory, Noordhoff, Groningen (1964).CrossRefGoogle Scholar
  7. 7.
    N. P. Semenyuk, “ Refined variant of a nonlinear theory of shells of the Timoshenko type and its use for calculating the initial post-critical behavior of long cylindrical shells,” Int. Appl. Mech., 26, No. 8, 754–760 (1990).ADSMATHGoogle Scholar
  8. 8.
    N. P. Semenyuk, “Stability of axially compressed noncircular cylindrical shells consisting of panels of constant curvature,” Int. Appl. Mech., 39, No. 6, 726–735 (2003).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    N. P. Semenyuk, “Stability of corrugated arches under external pressure,” Int. Appl. Mech., 49, No. 2, 211–219 (2013).ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    N. P. Semenyuk and N. B. Zhukova, “Accuracy of nonlinear relations of Timoshenko-type shell theory when transverse contraction is ignored,” Int. Appl. Mech., 26, No. 10, 942–948 (1990).ADSMATHGoogle Scholar
  11. 11.
    N. P. Semenyuk, N. B. Zhukova, and N.A. Neskhodovskaya, “Stability of orthotropic corrugated cylindrical shells under axial compression,” Mech. Comp. Mater., 38, No. 3, 243–250 (2002).CrossRefGoogle Scholar
  12. 12.
    N. P. Semenyuk, N. B. Zhukova, and V. V. Ostapchuk, ”Stability of corrugated composite noncircular cylindrical shells under external pressure,” Int. Appl. Mech., 43, No. 12, 1380–1389 (2007).ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    N. P. Semenyuk and N. A. Neskhodovskaya, “Timoshenko-type theory in the stability analysis of corrugated cylindrical shells,” Int. Appl. Mech., 38, No. 6, 723–730 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    N. P. Semenyuk, V. M. Trach, and N. B. Zhukova, ”Incremental analysis of the nonlinear behavior of thin shells,” Int. Appl. Mech., 44, No. 9, 1025–1031 (2008).ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Y. M. Tarnopolskiy and A. V. Roze, Characteristics for Calculating Parts Made of Reinforced Plastics, NASA-TM-75915 (1981).Google Scholar
  16. 16.
    S. P. Timoshenko, Theory of Elastic Stability, McGraw-Hill, New York (1936).Google Scholar
  17. 17.
    I. Yu. Babich, N. B. Zhukova, N. P. Semenyuk, and V. M. Trach, “Stability of circumferentialy corrugated cylindrical shells under external pressure,” Int. Appl. Mech., 46, No. 8, 919–928 (2010).CrossRefMathSciNetGoogle Scholar
  18. 18.
    I. Yu. Babich, N. B. Zhukova, N. P. Semenyuk, and V. M. Trach, “Stability of circumferentialy corrugated shells under hydrostatic pressure,” Int. Appl. Mech., 46, No. 9, 1001–1038 (2010).CrossRefMathSciNetGoogle Scholar
  19. 19.
    B. Budiansky, “Theory of buckling and post-buckling behavior of elastic structures,” Adv. Appl. Mech., 14, 2–65 (1974).Google Scholar
  20. 20.
    E. Hurlbrink, “Festigkeits-berechnung von rohrenartigen Korpern, die unter ausserem Drucke stehen,” Schiffbau, 9, No. 14, 517–523 (1907/1908).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations