International Applied Mechanics

, Volume 49, Issue 6, pp 685–692 | Cite as

Nonlinear Deformation of Thin Isotropic and Orthotropic Shells of Revolution with Reinforced Holes and Rigid Inclusions

  • V. A. Maksimyuk
  • E. A. Storozhuk
  • I. S. Chernyshenko

The stress–strain state of thin spherical, conical, and ellipsoidal shells made of nonlinear elastic orthotropic composites is analyzed numerically. The methods of successive approximations, the finite-difference method, and an original algorithm for the numerical discretization of a plane curve are used. The effect of the orthotropy and nonlinearity of composite materials, the geometry of shells, and the stiffness of the reinforcement (rings, inclusions) on the stress–strain state is studied


nonlinear elastic orthotropic composite thin ellipsoidal shell rigid inclusion circular hole finite-difference method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Georgievskii, V. A. Maksimyuk, and I. S. Chernyshenko, “Reinforcement of the edge of a hole in orthotropic physically nonlinear shells of revolution,” Prikl. Mekh., 23, No. 6, 125–127 (1987).Google Scholar
  2. 2.
    A. N. Guz, A. S. Kosmodamianskii, V. P. Shevchenko, et al., Stress Concentration, Vol. 7 of the 12-volume series Mechanics of Composite Materials [in Russian], A.S.K., Kyiv (1998).Google Scholar
  3. 3.
    V. A. Lomakin, “On the theory of anisotropic plasticity,” Vestn. MGU, Ser. Mat. Mekh., No. 4, 49–53 (1964).Google Scholar
  4. 4.
    Yu. S. Solomonov, V. P. Georgievskii, A. Ya. Nedbai, and V. A. Andryushin, Methods for the Design of Cylindrical Shells Made of Composite Materials [in Russian], Fizmatlit, Moscow (2009).Google Scholar
  5. 5.
    D. H. Bonde and and K. P. Rao, “Thermal stresses in a cylindrical shell containing a circular hole or a rigid inclusion,” Nucl. Eng. Design, 40, No. 2, 337–346 (1977).CrossRefGoogle Scholar
  6. 6.
    V. N. Chekhov and S. V. Zakora, “Stress concentration in a transversely isotropic spherical shell with two circular rigid inclusions,” Int. Appl. Mech., 47, No. 4, 441–448 (2011).ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    I. S. Chernyshenko, “Elastic-plastic state of shells of revolution with a rigid circular inclusion,” Int. Appl. Mech., 16, No. 2, 130–134 (1980).ADSMATHGoogle Scholar
  8. 8.
    I. S. Chernyshenko, “Nonlinear deformation of isotropic and orthotropic shells with holes reinforced by a rigid elastic element,” Int. Appl. Mech., 25, No. 1, 54–59 (1989).ADSMATHMathSciNetGoogle Scholar
  9. 9.
    I. S. Chernyshenko and V. A. Maksimyuk, “On the stress–strain state of toroidal shells of elliptical cross section formed from nonlinear elastic orthotropic materials,” Int. Appl. Mech., 36, No. 1, 90–97 (2000).ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    V. P. Georgievskii, A. N. Guz, V. A. Maksimyuk, and I. S. Chernyshenko, “Numerical analysis of the nonlinearly elastic state around cutouts in orthotropic ellipsoidal shells,” Int. Appl. Mech., 25, No. 12, 1207–1212 (1989).ADSGoogle Scholar
  11. 11.
    A. N. Guz, E. A. Storozhuk, and I. S. Chernyshenko, “Nonlinear two-dimensional static problems for thin shells with reinforced curvilinear holes,” Int. Appl. Mech., 45, No. 12, 1269–1300 (2009).ADSCrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    V. A. Maksimyuk, E. A. Storozhuk, and I. S. Chernyshenko, “Using mesh-based methods to solve nonlinear problems of statics for thin shells,” Int. Appl. Mech., 45, No. 1, 32–56 (2009).ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    E. Reissner and F. Y. M. Wan, “Further considerations of stress concentration problems for twisted or sheared shallow spherical shells,” Int. J. Solids Struct., 31, No. 16, 2153–2165 (1994).CrossRefMATHGoogle Scholar
  14. 14.
    E. Reissner and F. Y. M. Wan, “Static-geometric duality and stress concentration in twisted and sheared shallow spherical shells,” Comp. Mech., 22, 437–442 1999.ADSCrossRefMATHGoogle Scholar
  15. 15.
    V. P. Shevchenko and S. V. Zakora, “On the mutual influence of closely located circular holes with rigid contours in a spherical shell,” J. Math. Sci., 174, No. 3, 322–330 (2011).Google Scholar
  16. 16.
    S. V. Zakora and Val. N. Chekhov, “Stress state of a transversely isotropic spherical shell with a rigid circular inclusion,” Int. Appl. Mech., 41, No. 12, 1384–1390 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. A. Maksimyuk
    • 1
  • E. A. Storozhuk
    • 1
  • I. S. Chernyshenko
    • 1
  1. 1.S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations