Advertisement

International Applied Mechanics

, Volume 49, Issue 3, pp 322–327 | Cite as

Axisymmetric magnetoelastic deformation of a flexible orthotropic ring plate with orthotropic conductivity

  • L. V. Mol’chenko
  • I. I. Loos
  • L. M. Fedorchenko
Article

An axisymmetric nonlinear problem of magnetoelasticity for a ring plate with orthotropc conductivity is solved. The governing system of nonlinear differential equations describing the stress–strain state of the flexible orthotropic ring plate in mechanical and magnetic fields is derived. A numerical example is given. The dependence of the stress state of the orthotropic plate on the tangential component of magnetic flux density is analyzed

Keywords

flexible ring plate magnetic field magnetoelasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. M. Grigorenko and L. V. Mol’chenko, Fundamentals of the Theory of Plates and Shells with Elements of Magnetoelasticity (Textbook) [in Russian], IPTs Kievskii Universitet, Kyiv (2010).Google Scholar
  2. 2.
    A. Kelly and G. W. Groves, Crystallography and Crystal Defects, Longman Group, Ltd., London (1970).Google Scholar
  3. 3.
    L. D. Landau, and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford (1984).Google Scholar
  4. 4.
    L. V. Mol’chenko, I. I. Loos, and R. Sh. Indiaminov, “Magnetoelasticity of a conical shell with orthotropic conductivity: Geometrically nonlinear problem formulation,” Vestn. Kiev. Nats. Univ., No. 2, 85–90 (2007).Google Scholar
  5. 5.
    J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York (1941).MATHGoogle Scholar
  6. 6.
    L. A. Shapovalov, “On simple equations of the geometrically nonlinear theory of thin shells,” Inzh. Zh. Mekh. Tverd. Tela, No. 1, 56–62 (1968).Google Scholar
  7. 7.
    L. V. Mol’chenko, “A method for solving two-dimensional nonlinear boundary-value problems of magnetoelasticity for thin shells,” Int. Appl. Mech., 41, No. 5, 490–495 (2005).MathSciNetCrossRefGoogle Scholar
  8. 8.
    L. V. Mol’chenko and I. I. Loos, “Effect of conicity on axisymmetrical strain state of flexible orthotropic conical shell in nonstationary magnetic field,” Int. Appl. Mech., 46, No. 11, 1261–1267 (2010).MathSciNetCrossRefGoogle Scholar
  9. 9.
    L. V. Mol’chenko, I. I. Loos, and R. Sh. Indiaminov, “Determining the stress state of flexible orthotropic shell of revolution in magnetic field,” Int. Appl. Mech., 44, No. 8, 882–891 (2008).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    L. V. Mol’chenko, I. I. Loos, and R. Sh. Indiaminov, “Stress–strain state of flexible ring plates of variable stiffness in a magnetic field,” Int. Appl. Mech., 45, No. 11, 1236–1242 (2009).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    L. V. Mol’chenko, I. I. Loos, and I. V. Plyas, “Stress analysis of a flexible ring plate with circumferentially varying stiffness in a magnetic field,” Int. Appl. Mech., 46, No. 5, 567–572 (2010).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • L. V. Mol’chenko
    • 1
  • I. I. Loos
    • 1
  • L. M. Fedorchenko
    • 1
  1. 1.Taras Shevchenko National UniversityKyivUkraine

Personalised recommendations