International Applied Mechanics

, Volume 49, Issue 2, pp 245–255 | Cite as

The effect of magnetic field and thermal relaxation on 2-D problem of generalized thermoelastic diffusion

  • M. I. A. Othman
  • R. M. Farouk
  • H. A. El Hamied

Generalized magnetothermoelasticity is developed. The formulation is done under two theories: the generalized coupled thermoelasticity theory and Lord–Shulman theory with one relaxation time. A normal mode analysis is performed to obtain the expressions for temperature, displacement components, thermal stress distributions, and concentration of diffusion. The variations of the variables are represented graphically. A comparison is made with the results predicted by the two theories in the presence and absence of the magnetic field


generalized thermoelasticity thermoelastic diffusion Lord–Shulman electromagnetic field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. K. Agarwal, “On electromagneto-thermoelastic plane wave,” Acta Mech., 34, 181–191 (1979).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    M. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., 27, 240–253 (1956).MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    L. Cagniared, “Surla nature des ondes seismeques capables de transverser le noyan terrestre,” Comp. Rend., 234, 1705 (1952).Google Scholar
  4. 4.
    R. Dhaliwal and H. H. Sherief, “Generalized thermoelasticity for anisotropic media,” Quat. Appl. Math., 33, 1–8 (1980).MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Ignaczak, “A note on uniqueness in thermoelasticity with one relaxation time,” J. Therm. Stresses, 5, 257–263 (1982).MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. Knopoff, “The interaction between elastic wave motions and magnetic field in electric conductors,” J. Geophys. Res., 60, 441 (1955).ADSCrossRefGoogle Scholar
  7. 7.
    H. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solid., 15, 299–309 (1967).ADSMATHCrossRefGoogle Scholar
  8. 8.
    A. H. Nayfeh and S. N. Nasser, “Electromagnetic-thermoelastic plane in solids waves with thermal relaxation,” J. Appl. Mech., 113, 108–113 (1972).CrossRefGoogle Scholar
  9. 9.
    W. Nowacki, “Dynamical problems of thermodiffusion in solids I,” Bull. Acad. Pol. Sci. Ser. Sci. Tech., 22, 55–64 (1974).MathSciNetGoogle Scholar
  10. 10.
    W. Nowacki, “Dynamical problems of thermodiffusion in solids II,” Bull. Acad. Pol. Sci. Ser. Sci. Tech., 22, 129–135 (1974).Google Scholar
  11. 11.
    W. Nowacki, “Dynamical problems of thermodiffusion in solids III,” Bull. Acad. Pol. Sci. Ser. Sci. Tech., 22, 257–266 (1974).Google Scholar
  12. 12.
    W. Nowacki, “Dynamical problems of thermodiffusion in elastic solids,” Proc. Vib. Prob., 15, 105–128 (1974).MathSciNetMATHGoogle Scholar
  13. 13.
    M. I. A. Othman, “Lord–Shulman theory under the dependence of the modulus of elasticity on the reference temperature in two dimensional generalized thermo-elasticity,” J. Therm. Stresses, 25, 1027–1045 (2002).CrossRefGoogle Scholar
  14. 14.
    M. I. A. Othman, “Effect of rotation on plane waves in generalized thermo-elasticity with two relaxation times,” Int. J. Solids Struct., 41, 2939–2956 (2004).MATHCrossRefGoogle Scholar
  15. 15.
    M. I. A. Othman, “Generalized electromagneto-thermoviscoelastic in case of 2-D thermal shock problem in a finite conducting medium with one relaxation time,” Acta Mech., 169, 37–51 (2004).MATHCrossRefGoogle Scholar
  16. 16.
    M. I. A. Othman, S. Y. Atwa, and R. M. Farouk, “The effect of diffusion on two-dimensional problem of generalized thermoelasticity with Green–Naghdi theory,” Int. Comm. in Heat and Mass Transfer, 36, 857–864 (2009).CrossRefGoogle Scholar
  17. 17.
    M. I. A. Othman, R. M. Farouk, and H. A. Hamied, “The dependence of the modulus of elasticity on reference temperature in the theory of generalized thermoelastic diffusion with one relaxation time,” Int. J. Ind. Math., 1, 277–289 (2009).Google Scholar
  18. 18.
    G. Paria, “Magneto-elasticity and magneto-thermoelasticity,” Adv. Appl. Mech. (Academic Press), 10, 73–112 (1966).CrossRefGoogle Scholar
  19. 19.
    T. Rikitake, “Electrical conductivity and temperature in the earth,” Bull. Earthquake Res. Inst., Tokyo Univ., 30, 13–24 (1952).MathSciNetGoogle Scholar
  20. 20.
    H. H. Sherief, On Generalized Thermoelasticity, Ph. D. Thesis, University of Calgary Canada (1980).Google Scholar
  21. 21.
    H. H. Sherief, “On uniqueness and stability in generalized thermoelasticity,” Quart. Appl. Math., 45, 773–778 (1987).MathSciNetGoogle Scholar
  22. 22.
    H. H. Sherief, F. Hamza, and H. Saleh, “The theory of generalized thermoelastic diffusion,” Int. J. Eng. Sci., 42, 591–608 (2004).MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    H. H. Sherief and K. A. Helmy, “A two-dimensional problem for a half-space in magneto-thermoelasticity with thermal relaxation,” Int. J. Eng. Sci., 40, 587–604 (2002).MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    H. H. Sherief and H. Saleh, “A half-space problem in the theory of generalized thermo-elastic diffusion,” Int. J. Solids Struct., 42, 4484–4493 (2005).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. I. A. Othman
    • 1
  • R. M. Farouk
    • 1
  • H. A. El Hamied
    • 1
  1. 1.Zagazig UniversityZagazigEgypt

Personalised recommendations