International Applied Mechanics

, Volume 49, Issue 1, pp 114–121 | Cite as

Bifurcation Processes in Periodically Perturbed Systems


Two types of stochastic motion are described. These are bifurcational processes with nonlinear behavior as a limit cycle (synchronized and on a torus) with limited switching of unstable trajectories


limit cycle bifurcation LCE spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Anishchenko, Complex Oscillations in Simple Systems [in Russian], Nauka, Moscow (1990).Google Scholar
  2. 2.
    T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, and A. A. Samarskii, Structures and Chaos in Nonlinear Media [in Russian], Fizmatlit, Moscow (2007).Google Scholar
  3. 3.
    V. I. Zubov, Oscillations and Waves: Versatility of Maxwell Equations, World Scientific, Singapore (1998).Google Scholar
  4. 4.
    N. V. Nikitina, “Principle of skew-symmetry,” Dop. NAN Ukrainy, No. 2, 69–72 (2008).Google Scholar
  5. 5.
    T. Yu. Plyusnina and G. Yu. Riznichenko, “Types of nonlinear behavior of the system of ion transport through a membrane under the action of a weak electric field,” Biofizika, 41, No. 4, 943–949 (1996).Google Scholar
  6. 6.
    G. Yu. Riznichenko, Mathematical Models in Biophysics and Ecology [in Russian], Inst. Komp. Issled., Moscow (2003).Google Scholar
  7. 7.
    M. K. Rabinovich and D. I. Trubetskov, Introduction to the Theory of Oscillations and Waves [in Russian], NITs “Regularn. Khaotich. Dinam.,” Moscow (2000).Google Scholar
  8. 8.
    C. Hayashi, Nonlinear Oscillations in Physical Systems, McGraw-Hill, New York (1964).MATHGoogle Scholar
  9. 9.
    A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillations, Pergamon Press, Oxford (1966).Google Scholar
  10. 10.
    G. A. Leonov, Strange Attractors and Classical Stability Theory, Univ. Press, St. Peterburg (2008).Google Scholar
  11. 11.
    A. A. Martynyuk and N. V. Nikitina, “Oscillations of conservative systems with complex trajectories,” Int. Appl. Mech., 44, No. 7, 721–738 (2008).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    A. A. Martynyuk and N. V. Nikitina, “On chaotic motions of systems with dry friction,” Int. Appl. Mech., 44, No. 9, 1056–1064 (2008).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equation, Princeton Univ. Press, Princeton (1960).Google Scholar
  14. 14.
    N. V. Nikitina, “Bifurcations of a limit cycle in nonlinear dynamic systems,” Int. Appl. Mech., 45, No. 9, 1023–1032 (2009).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    N. V. Nikitina, “Complex oscillations in systems subject to periodic perturbation,” Int. Appl. Mech., 46, No. 11, 1319–1326 (2010).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations