Advertisement

International Applied Mechanics

, Volume 48, Issue 1, pp 94–100 | Cite as

Influence of the boundary conditions on the stress state of a flexible cylindrical shell of variable stiffness in a magnetic field

  • L. V. Mol’chenko
  • I. I. Loos
Article

The effect of the boundary conditions on the stress state of a circular cylindrical shell of variable thickness (stiffness) is analyzed using a geometrically nonlinear problem statement. The cylindrical shell is subject to a magnetic field, external electric current, and nonstationary mechanical load. Numerical results are presented and analyzed

Keywords

circular cylindrical shell magnetic field magnetoelasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. M. Grigorenko and A. P. Mukoed, Computer Solution of Nonlinear Problems in the Theory of Shells [in Russian], Vyshcha Shkola, Kyiv (1983).Google Scholar
  2. 2.
    R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Elsevier, New York (1965).MATHGoogle Scholar
  3. 3.
    L. V. Mol’chenko and I. I. Loos, “Deformation of a circular cylinder of variable stiffness in a magnetic field: Geometrically nonlinear problem formulation,” Mat. Meth. Fiz.-Mekh. Polya, 51, No. 3, 133–138 (2008).Google Scholar
  4. 4.
    I. E. Tamm, Fundamentals of the Theory of Electricity, Mir, Moscow (1979).Google Scholar
  5. 5.
    A. T. Ulitko, L. V. Mol’chenko, and V. F. Koval’chuk, Magnetoelasticity under Dynamic Loading [in Ukrainian], Lybid’, Kyiv (1994).Google Scholar
  6. 6.
    L. V. Mol’chenko, “Influence of an extraneous electric current on the stress state of an annular plate of variable rigidity,” Int. Appl. Mech., 37, No. 12, 1607–1611 (2001).CrossRefGoogle Scholar
  7. 7.
    L. V. Mol’chenko, “A method for solving two-dimensional nonlinear boundary-value problems of magnetoelasticity for thin shells,” Int. Appl. Mech., 41, No. 5, 490–495 (2005).CrossRefGoogle Scholar
  8. 8.
    L. V. Mol’chenko and P. V. Dikii, “Two-dimensional magnetoelastic solutions for an annular plate,” Int. Appl. Mech., 39, No. 11, 1328–1334 (2003).CrossRefGoogle Scholar
  9. 9.
    L. V. Mol’chenko and I. I. Loos, “Magnetoelastic nonlinear deformation of a conical shell of variable stiffness,” Int. Appl. Mech., 35, No. 11, 1111–1116 (2000).CrossRefGoogle Scholar
  10. 10.
    L. V. Mol’chenko and I. I. Loos, “Stress analysis of a flexible ring plate with circumferentially varying stiffness in a magnetic field,” Int. Appl. Mech., 46, No. 5, 567–572 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    L. V. Mol’chenko and I. I. Loos, “Influence of conicity on the stress–strain state of a flexible orthotropic conical shell in a nonstationary magnetic field,” Int. Appl. Mech., 46, No. 11, 1261–1267 (2010).CrossRefGoogle Scholar
  12. 12.
    L. V. Mol’chenko and I. I. Loos, “Effect of the tangential components of magnetic-flux density on the stress state of a flexible circular cylinder with variable stiffness,” Int. Appl. Mech., 47, No. 3, 313–319 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    L. V. Mol’chenko and M. V. Narol’skii, “A method to solve boundary-value problems of magnetoelasticity for flexible ring plates,” Int. Appl. Mech., 47, No. 5, 567–572 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Taras Shevchenko National UniversityKyivUkraine

Personalised recommendations