Advertisement

International Applied Mechanics

, Volume 47, Issue 5, pp 545–553 | Cite as

Stability of compound toroidal shells under external pressure

  • N. P. Semenyuk
  • N. B. Zhukova
Article
  • 51 Downloads

Compound toroidal shells whose surface is generated by revolving joined circular arcs are analyzed for stability. The proposed approach makes exact allowance for the geometry of the shell and the way its segments are joined. Shells made of composite materials are analyzed as an example to demonstrate the possibility of optimizing the meridian shape to increase the critical loads for various constructive designs of the joint

Keywords

stability circular arc corrugated shell external pressure orthotropic shell critical load 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Ambartsumyan, General Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1974).Google Scholar
  2. 2.
    L. E. Andreeva, “Design of corrugated membranes as anisotropic plates,” Inzh. Sb., 31, 128–141 (1955).Google Scholar
  3. 3.
    G. A. Vanin and N. P. Semenyuk, Stability of Shells Made of Composites with Imperfections [in Russian], Naukova Dumka, Kyiv (1987).Google Scholar
  4. 4.
    S. K. Godunov, “Numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk, 16, No. 3, 171–174 (1961).MathSciNetzbMATHGoogle Scholar
  5. 5.
    E. I. Grigolyuk and V. I. Shalashilin, Problems of Nonlinear Deformation: Parameter Continuation Method in Nonlinear Problems of Solid Mechanics [in Russian], Nauka, Moscow (1988).Google Scholar
  6. 6.
    Ya. M. Grigorenko and N. N. Kryukov, Numerical Solution of Static Problems for Flexible Layered Shells with Variable Parameters [in Russian], Naukova Dumka, Kyiv (1988).Google Scholar
  7. 7.
    V. I. Gulyaev, V. A. Bazhenov, and E. A. Gotsulyak, Stability of Nonlinear Mechanical Systems [in Russian], Vyshcha Shkola, Lviv (1982).Google Scholar
  8. 8.
    B. Ya. Kantor, Contact Problems in the Nonlinear Theory of Shells of Revolution [in Russian], Naukova Dumka, Kyiv (1990).Google Scholar
  9. 9.
    A. V. Karmishin, V. A. Lyaskovets, V. I. Myachenkov, and A. N. Frolov, Statics and Dynamics of Thin-Walled Shell Structures [in Russian], Mashinostroenie, Moscow (1975).Google Scholar
  10. 10.
    V. M. Muratov and A. T. Tubaivskii, “Experimental stability analysis of corrugated shells,” Khim. Neft. Mashinostr., No. 3, 18–20 (1992).Google Scholar
  11. 11.
    V. V. Novozhilov, Thin Shell Theory, Noordhoff, Groningen (1964).Google Scholar
  12. 12.
    K. E. Tsiolkovsky, “Dirigible, stratoplane, and spaceship,” Grazhd. Aviats., No. 9, 7–8 (1933).Google Scholar
  13. 13.
    V. I. Feodos’ev, Elastic Elements in Precision Instrument Making [in Russian], Oborongiz, Moscow (1949).Google Scholar
  14. 14.
    I. Yu. Babich, N. B. Zhukova, N. P. Semenyuk, and V. M. Trach, ”Stability of circumferentially corrugated cylindrical shells under external pressure,” Int. Appl. Mech., 46, No. 8, 919–928 (2010).CrossRefGoogle Scholar
  15. 15.
    I. Yu. Babich, N. B. Zhukova, N. P. Semenyuk, and V. M. Trach, ”Stability of circumferentially corrugated shells under hydrostatic pressure,” Int. Appl. Mech., 46, No. 9, 1001–1009 (2010).CrossRefGoogle Scholar
  16. 16.
    A. V. Boriseiko, N. P. Semenyuk, and V. M. Trach, ”Canonical equations in the geometrically nonlinear theory of thin anisotropic shells,” Int. Appl. Mech., 46, No. 2, 165–174 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    D. Buchnell, ”Crippling and buckling of corrugated ring-stiffened cylinders,” AIAA J., 9, No. 5, 357–421 (1972).Google Scholar
  18. 18.
    C. T. F. Ross, ”A redesign of the corrugated tin can,” J. Thin-Walled Struct., 26, No. 3, 179–193 (1996).CrossRefGoogle Scholar
  19. 19.
    N. P. Semenyuk and I. Yu. Babich, ”Stability of longitudinally corrugated cylindrical shells under uniform surface pressure,” Int. Appl. Mech., 43, No. 11, 1236–1247 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    N. P. Semenyuk and V. M. Trach, ”Stability of shallow anisotropic shells of revolution,” Int. Appl. Mech., 46, No. 1, 69–77 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    N. P. Semenyuk, N. B. Zhukova, and V. V. Ostapchuk, ”Stability of corrugated composite noncircular shells under external pressure,” Int. Appl. Mech., 43, No. 12, 1380–1389 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    M. Stein and J. F. McElman, ”Buckling of segments of toroidal shells,” AIAA J., 3, No. 9, 1704–1715 (1965).ADSCrossRefGoogle Scholar
  23. 23.
    V. I. Weingarten and D. R. Veronda, ”Buckling of segments of toroidal shells,” AIAA J., 11, No. 10, 1422–1429 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations