Skip to main content
Log in

Analysis of structurally complex nanocomposites (review)

  • Published:
International Applied Mechanics Aims and scope

Structurally complex nanocomposites (their fillers have complex shape, which complicates the theoretical analysis of these composites) are considered. Nanotubes of quite complex shape that are very difficult to theoretically describe and analyze are exemplified. Fibrous and particulate composites reinforced with bristled nanofibers and bristled knedel-like nanogranules, respectively, are described and analyzed theoretically. Theoretical approaches to studying nanocomposites with large-scale and small-scale bendings of nanotubes are outlined

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Akbarov and A. N. Guz, “Stressed state in a composite material with curved layers having a low filler concentration,” Mech. Comp. Mater., 20, No. 6, 688–993 (1984).

    Article  Google Scholar 

  2. S. D. Akbarov and A. N. Guz, ”Revisiting the mechanics of composites with curved structures,” DAN SSSR, 281, No. 1, 37–41 (1985).

    Google Scholar 

  3. S. D. Akbarov and A. N. Guz, “On some effect in the fracture mechanics of composites,” DAN SSSR, 290, No. 1, 23–26 (1986).

    Google Scholar 

  4. V. M. Buivol and O. M. Guz, “Two cylindrical shells in a compressible fluid flow,” Dokl. AN URSR, No. 4, 437–441 (1966).

  5. G. A. Van Fo Fy, Theory of Reinforced Materials [in Russian], Naukova Dumka, Kyiv (1971).

    Google Scholar 

  6. G. A. Vanin, Micromechanics of Composite Materials [in Russian], Naukova Dumka, Kyiv (1985).

    Google Scholar 

  7. A. N. Guz, “Solving problems for a shallow spherical shell in the case of multiply connected domains,” Dokl. AN SSSR, 158, No. 6, 1281–1284 (1964).

    Google Scholar 

  8. A. N. Guz, “Solving dynamic problems for several parallel cylindrical cavities,” in: Problems of Rock Mechanics [in Russian], Nauka, Alma-Ata (1966), pp. 137–144.

    Google Scholar 

  9. O. M. Guz, “Dynamic axisymetric problem of elasticity for multiply connected domains,” Dokl. AN URSR, Ser. A, No. 4, 343–346 (1967).

    Google Scholar 

  10. A. N. Guz, “On setting up a stability theory of unidirectional fibrous materials,” Int. Appl. Mech., 5, No. 2, 156–162 (1969).

    MathSciNet  ADS  Google Scholar 

  11. A. N. Guz and L. S. Pal’ko, “Axisymmetric vibrations of two spherical shells in a fluid,” Izv. AN SSSR, Mekh. Zhidk. Gaza, 1, 26–30 (1969).

    Google Scholar 

  12. A. N. Guz, “Solving two- and three-dimensional problems of continuum mechanics for multiply connected domains,” in: Stress Concentration [in Russian], Issue 2, Naukova Dumka, Kyiv (1968), pp. 54–59.

    Google Scholar 

  13. A. N. Guz, “Continuum theory of composites with small-scale curvature in structure,” DAN SSSR, 268, No. 2, 307–313 (1983).

    Google Scholar 

  14. A. N. Guz, “Theory of vibrations of composites with small-scale curvature in structure,” DAN SSSR, 270, No. 4, 824–827 (1983).

    Google Scholar 

  15. A. N. Guz, Funamentals of the Fracture Mechanics of Compressed Composites [in Russian], in 2 vols., Vol. 1: Fracture in the Structure of Material, Vol. 2: Related Failure Mechanisms, Litera, Kyiv (2008).

  16. A. N. Guz and V. T. Golovchan, Diffraction of Elastic Waves in Multiply Connected Bodies [in Russian], Naukova Dumka, Kyiv (1972).

    Google Scholar 

  17. A. N. Guz and G. V. Guz, ”Mechanics of composite materials with large-scale curving of filler,” Mech. Comp. Mater., 18, No. 4, 434–439 (1982).

    Article  MathSciNet  Google Scholar 

  18. A. N. Guz and J. J. Rushchitsky, “Establishing foundations of the mechanics of nanocomposites (review),” Int. Appl. Mech., 47, No. 1, 2–44 (2011).

    Article  ADS  Google Scholar 

  19. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, Introduction to the Mechanics of Nanocomposites [in Russian], Inst. Mekh. im. S. P. Timoshenko, Kyiv (2010).

    Google Scholar 

  20. L. J. Broutman and R. H. Krock (eds.), Composite Materials, in 8 vols., Academic Press, New York–London (1974–1975).

    Google Scholar 

  21. R. M. Christensen, Mechanics of Composite Materials, Wiley, New York (1979).

    Google Scholar 

  22. A. N. Guz (ed.), Mechanics of Composite Materials [in Russian], in 12 vols., Naukova Dumka (Vols. 1–4), A.S.K. (Vols. 5–12), Kyiv (1993–2003).

  23. B. W. Rosen, “Mechanics of composite strengthening,” in: Fiber Composite Materials, American Society of Metals, Metals Park, Ohio (1965), pp. 37–75.

  24. J. J. Rushchitsky, Elements of Mixture Theory [in Russian], Naukova Dumka, Kyiv (1991).

    Google Scholar 

  25. I. P. Suzdalev, Nanotechnology: Physics and Chemistry of Nanoclusters, Nanostructures, and Nanomaterials [in Russian], KomKniga, Moscow (2006).

    Google Scholar 

  26. Y. M. Tarnopolskiy and A. V. Roze, Characteristics for Calculating Parts Made of Reinforced Plastics, NASA-TM-75915 (1981).

  27. A. D. Akbarov and A. N. Guz, “Method of solving problems in mechanics of composite materials with bent layers,” Int. Appl. Mech., 20, No. 4, 299–304 (1984).

    ADS  MATH  Google Scholar 

  28. A. D. Akbarov and A. N. Guz, “Method of solving problems in mechanics of fiber composites with curved structures,” Int. Appl. Mech., 20, No. 9, 777–784 (1984).

    ADS  MATH  Google Scholar 

  29. A. D. Akbarov and A. N. Guz, “Model of a piecewise-homogeneous body in the mechanics of laminar composites with fine-scale curvatures,” Int. Appl. Mech., 21, No. 4, 313–318 (1985).

    ADS  MATH  Google Scholar 

  30. A. D. Akbarov and A. N. Guz, “Stress state of a fiber composite with curved structures with a low fiber concentration,” Int. Appl. Mech., 21, No. 6, 560–565 (1985).

    ADS  Google Scholar 

  31. A. D. Akbarov and A. N. Guz, Mechanics of Curved Composites, Kluwer, Dordrecht (2000).

    Book  MATH  Google Scholar 

  32. A. D. Akbarov and A. N. Guz, “Continuum approaches in the mechanics of curved composites and associated problems for structural members,” Int. Appl. Mech., 38, No. 11, 1285–1308 (2002).

    Article  Google Scholar 

  33. A. D. Akbarov and A. N. Guz, “Mechanics of curved composites (piecewise-homogeneous body model),” Int. Appl. Mech., 38, No. 12, 1415–1439 (2002).

    Article  Google Scholar 

  34. A. D. Akbarov and A. N. Guz, “Mechanics of curved composites and some related problems for structural members,” Mech. Adv. Mater. Struct., 11, No. 6, Part II, 445–516 (2004).

    Article  Google Scholar 

  35. M. Brinkmann, F. Chandezon, R. B. Pansu, and C. Julien-Rabant, “Epitaxial growth of highly oriented fibers of semiconducting polymers with shish-kebab-like superstructure,” Adv. Funct. Mater., 19, 2759–2766 (2009).

    Article  Google Scholar 

  36. C. Cattani and J. J. Rushchitsky, Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructures, World Scientific Publishing, Singapore–London (2007).

    Book  Google Scholar 

  37. C. Cattani, J. J. Rushchitsky, and S. V. Sinchilo, “Physical constants for one type of nonlinearly elastic fibrous micro- and nanocomposites with hard and soft nonlinearities,” Int. Appl. Mech., 41, No. 12, 1368–1377 (2005).

    Article  ADS  Google Scholar 

  38. A. N. Cleland, Foundations of Nanomechanics. From Solid-State Theory to Device Applications, Series “Advanced Texts in Physics,” Springer-Verlag, Berlin (2003).

    Google Scholar 

  39. R. M. Christensen ad K. H. Lo, “Solutions for effective shear properties in three phase sphere and cylinder models,” J. Mech. Phys. Solids, 27, 315–330 (1979).

    Article  ADS  MATH  Google Scholar 

  40. R. M. Christensen, “A critical evaluation for a class of micromechanics models,” J. Mech. Phys. Solids, 38, 379–404 (1990).

    Article  ADS  Google Scholar 

  41. R. M. Christensen, “Two theoretical elasticity micromechanics models,” J. Elasticity, 50, 15–25 (1998).

    Article  MATH  Google Scholar 

  42. M. Endo, Y. A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, et al., “Structural characteristization of cup-packed-type nanofibers with an entirely hollow core,” Appl. Phys. Lett., 80, No. 7, 1267–1269 (2002).

    Article  ADS  Google Scholar 

  43. M. Endo, Y. A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, et al., “Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers,” Nanoletters, 3, No. 6, 723–726 (2003).

    Article  ADS  Google Scholar 

  44. A. N. Guz, “On quasi-regularity of infinite systems for a spherical shell weakened by several openings,” Int. Appl. Mech., 2, No. 3, 79–80 (1966).

    ADS  Google Scholar 

  45. A. N. Guz, “Solving the second plane dynamic problem of elasticity theory for multiply connected domains,” Int. Appl. Mech., 2, No. 8, 74–78 (1966).

    MathSciNet  ADS  Google Scholar 

  46. A. N. Guz, “Mechanics of composite materials with a small-scale structural flexure,” Int. Appl. Mech., 19, No. 5, 383–392 (1983).

    MathSciNet  ADS  MATH  Google Scholar 

  47. A. N. Guz, “Quasi-uniform states in composites with small-scale curvatures in the structure,” Int. Appl. Mech., 19, No. 6, 479–489 (1983).

    ADS  MATH  Google Scholar 

  48. A. N. Guz and I. A. Guz, “On models in the theory of stability of multi-walled carbon nanotubes,” Int. Appl. Mech., 42, No. 6, 617–628 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  49. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, “Establishing fundamentals of the mechanics of nanocomposites,” Int. Appl. Mech., 43, No. 3, 247–271 (2007).

    Article  ADS  Google Scholar 

  50. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, “Comparative computer modeling of carbon-polymer composites with carbon or graphite microfibers or carbon nanotubes,” CMRS, 17, No. 1, 44–59 (2007).

    Google Scholar 

  51. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, “Establishing fundamentals of the mechanics of nanocomposites,” Int. Appl. Mech., 43, No. 3, 247–271 (2007).

    Article  ADS  Google Scholar 

  52. I. A. Guz, A. N. Guz, and J. J. Rushchitsky, “Modelling properties of micro- and nanocomposites with brush-like reinforcement (Modellierung der Eigenschaften von Mikro und Nanoverbundwerkstoffen mit burstenartigen Verstarkungen),“ Math.-Wiss. und Werkstofftech, 40, No. 3, 33–39 (2009).

    Google Scholar 

  53. I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, “Prediction the properties of micro- and nanocomposites—from microwhiskers to bristled centipedes,” Philos. Trans. Royal Soc. London, 246, No. 3, 264–268 (2007).

    Google Scholar 

  54. I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, “Predicting the properties of nano-composites with brush-like reinforcement,” in: Abstracts of the Int. Conf. CNTNET 07 “Carbon Nano Tubes New Engineering Technologies,” University of Cambridge, Trinity College, September 10–12 (2007), p. 27.

  55. I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, “Developing the mechanical models for nano-materials,” Composites. Part. A: Applied Science and Manufacturing, 38, No. 4, 1234–1250 (2007).

    Article  Google Scholar 

  56. I. A. Guz and J. J. Rushchitsky, “Comparison of mechanical properties and effects in micro and nanocomposites with carbon fillers (carbon microfibers, graphite microwhiskers and carbon nanotubes),” Mech.Comp. Mater., 40, No. 2, 179–190 (2004).

    Article  Google Scholar 

  57. I. A. Guz and J. J. Rushchitsky, “Comparing the evolution characteristics of waves in nonlinearly elastic micro- and nanocomposites with carbon fillers,” Int. Appl. Mech., 40, No. 7, 785–793 (2004).

    Article  ADS  Google Scholar 

  58. I. A. Guz and J. J. Rushchitsky, “Computational simulation of harmonic wave propagation in fibrous micro– and nanocomposites with carbon or graphite microfibers or carbon nanotubes,” Compos. Sci. Technol., 64, No. 4, 861–866 (2007).

    Article  Google Scholar 

  59. I. A. Guz, J. J. Rushchitsky, and A. N. Guz, “Mechanical models in nanomaterials,” in: K. D. Sattler (ed.), Handbook of Nanophysics, Vol. 1: Principles and Methods, Taylor & Francis Publisher (CRC Press), Boca Raton (2010), pp. 24.1–24.12.

    Google Scholar 

  60. H. S. Katz and J. V. Milewski (eds.), Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold Company, New York (1978).

    Google Scholar 

  61. http://nepp.nasa.gov/whisker (2007).

  62. Y.-A. Kim, T. Hayashi, S. Naokawa, T. Yanagisawa, and M. Endo, “Comparative study of herringbone and stacked-cup carbon nanofibers,” Carbon, 45, 3005–3008 (2005).

    Article  Google Scholar 

  63. J. H. Koo, Polymer Nanocomposites: Processing, Characterization, and Application, McGraw-Hill, New York (2006).

    Google Scholar 

  64. S. Ladden, “Knedel-like nanoparticles,” Math.-Wiss. und Werkstofftech, 40, No. 3, 45 (2009).

    Google Scholar 

  65. H. Le Quang and Q.-C. He, “A one-parameter general self-consistent model for isotropic multi-phase composites,” Int. J. Solids Struct., 44, 6805–6825 (2007).

    Article  MATH  Google Scholar 

  66. G. Wilde (ed.), Nanostructured Materials, Elsevier, Amsterdam (2009).

    Google Scholar 

  67. A. M. Nystrom, J. W. Bartels, W.-J. Du, and K. I. Wooley, “Perfluorocarbon-loaded shell crosslink knedel-like nanoparticles: Lessons regarding polymer mobility and self-assembly,” J. Polymer Science: Part A: Polymer Chemistry, 47, 1023–1037 (2009).

    Article  ADS  Google Scholar 

  68. Y.-W. Mai and Z.-Z. Yu (eds.), Polymer Nanocomposites, Woodhead Publishing Limited, Cambridge (2009).

    Google Scholar 

  69. R. K. Gupta, E. Kennel, and K.-J. Kim (eds.), Polymer Nanocomposites Handbook, Taylor & Francis Group/CRC Press, Boca Raton–London (2010).

    Google Scholar 

  70. J. Ramsden, Nanotechnology, Ventus Publishing ApS (2010).

  71. READE.com: READE Advanced Materials —Filler Reinforcements (2007).

  72. M. Roukes, “Nanoelectromechanical systems face the future,” Physics World, 14, No. 2 (2001).

  73. E. T. Thostenson, C. Li, and T.-W. Chou, “Nanocomposites in context (review),” Compos. Sci. Technol., 65, 491–516 (2005).

    Article  Google Scholar 

  74. H. D. Wagner, “Nanotubes and nanocomposites. Science fiction or practical reality? Wagner-class_14-last.htm http://www.weizmann.ac.il/wagner/Courses/composites/Courses.html (2009).

  75. Y. Wang, Z. Tang, X. Liang, L. M. Liz-Marzan, and N. A. Kotov, “SiO2-coated CdTe nanowires: bristled nanocentipedes,” Nano Letters, No. 2, 225–231 (2004).

  76. N. Wilson, K. Kannangara, G. Smith, M. Simmons, and B. Raguse, Nanotechnology. Basic Science and Emerging Technologies, Chapman & Hall/CRC, Boca Raton–London (2002).

    Book  Google Scholar 

  77. M. Zhang and J. Li, “Carbon nanotube in different shapes,” Materials Today, 12, No. 6, 12–18 (2009).

    Article  Google Scholar 

  78. K. D. Sattler (ed.), Handbook of Nanophysics, in 7 vols., Vol. 1: Principles and Methods, Vol. 2: Clusters and Fullerenes, Vol. 3: Nanoparticles and Quantum Dots, Vol. 4: Nanotubes and Nanowires, Vol. 5: Functional Nanomaterials, Vol. 6: Nanoelectronics and Nanophotonics, Vol. 7: Nanomedicine and Nanorobotics, Taylor & Francis Group/CRC Press, Boca Raton–London (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Guz.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 47, No. 4, pp. 3–75, July 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guz, A.N., Rushchitsky, J.J. Analysis of structurally complex nanocomposites (review). Int Appl Mech 47, 351–409 (2011). https://doi.org/10.1007/s10778-011-0466-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-011-0466-x

Keywords

Navigation