Advertisement

Analysis of structurally complex nanocomposites (review)

  • A. N. Guz
  • J. J. Rushchitsky
Article

Structurally complex nanocomposites (their fillers have complex shape, which complicates the theoretical analysis of these composites) are considered. Nanotubes of quite complex shape that are very difficult to theoretically describe and analyze are exemplified. Fibrous and particulate composites reinforced with bristled nanofibers and bristled knedel-like nanogranules, respectively, are described and analyzed theoretically. Theoretical approaches to studying nanocomposites with large-scale and small-scale bendings of nanotubes are outlined

Keywords

nanocomposite structurally complex filler nanotube nanostructure bristled nanofibers large-scale and small-scale bendings of nanotubes 

References

  1. 1.
    S. D. Akbarov and A. N. Guz, “Stressed state in a composite material with curved layers having a low filler concentration,” Mech. Comp. Mater., 20, No. 6, 688–993 (1984).CrossRefGoogle Scholar
  2. 2.
    S. D. Akbarov and A. N. Guz, ”Revisiting the mechanics of composites with curved structures,” DAN SSSR, 281, No. 1, 37–41 (1985).Google Scholar
  3. 3.
    S. D. Akbarov and A. N. Guz, “On some effect in the fracture mechanics of composites,” DAN SSSR, 290, No. 1, 23–26 (1986).Google Scholar
  4. 4.
    V. M. Buivol and O. M. Guz, “Two cylindrical shells in a compressible fluid flow,” Dokl. AN URSR, No. 4, 437–441 (1966).Google Scholar
  5. 5.
    G. A. Van Fo Fy, Theory of Reinforced Materials [in Russian], Naukova Dumka, Kyiv (1971).Google Scholar
  6. 6.
    G. A. Vanin, Micromechanics of Composite Materials [in Russian], Naukova Dumka, Kyiv (1985).Google Scholar
  7. 7.
    A. N. Guz, “Solving problems for a shallow spherical shell in the case of multiply connected domains,” Dokl. AN SSSR, 158, No. 6, 1281–1284 (1964).Google Scholar
  8. 8.
    A. N. Guz, “Solving dynamic problems for several parallel cylindrical cavities,” in: Problems of Rock Mechanics [in Russian], Nauka, Alma-Ata (1966), pp. 137–144.Google Scholar
  9. 9.
    O. M. Guz, “Dynamic axisymetric problem of elasticity for multiply connected domains,” Dokl. AN URSR, Ser. A, No. 4, 343–346 (1967).Google Scholar
  10. 10.
    A. N. Guz, “On setting up a stability theory of unidirectional fibrous materials,” Int. Appl. Mech., 5, No. 2, 156–162 (1969).MathSciNetADSGoogle Scholar
  11. 11.
    A. N. Guz and L. S. Pal’ko, “Axisymmetric vibrations of two spherical shells in a fluid,” Izv. AN SSSR, Mekh. Zhidk. Gaza, 1, 26–30 (1969).Google Scholar
  12. 12.
    A. N. Guz, “Solving two- and three-dimensional problems of continuum mechanics for multiply connected domains,” in: Stress Concentration [in Russian], Issue 2, Naukova Dumka, Kyiv (1968), pp. 54–59.Google Scholar
  13. 13.
    A. N. Guz, “Continuum theory of composites with small-scale curvature in structure,” DAN SSSR, 268, No. 2, 307–313 (1983).Google Scholar
  14. 14.
    A. N. Guz, “Theory of vibrations of composites with small-scale curvature in structure,” DAN SSSR, 270, No. 4, 824–827 (1983).Google Scholar
  15. 15.
    A. N. Guz, Funamentals of the Fracture Mechanics of Compressed Composites [in Russian], in 2 vols., Vol. 1: Fracture in the Structure of Material, Vol. 2: Related Failure Mechanisms, Litera, Kyiv (2008).Google Scholar
  16. 16.
    A. N. Guz and V. T. Golovchan, Diffraction of Elastic Waves in Multiply Connected Bodies [in Russian], Naukova Dumka, Kyiv (1972).Google Scholar
  17. 17.
    A. N. Guz and G. V. Guz, ”Mechanics of composite materials with large-scale curving of filler,” Mech. Comp. Mater., 18, No. 4, 434–439 (1982).MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. N. Guz and J. J. Rushchitsky, “Establishing foundations of the mechanics of nanocomposites (review),” Int. Appl. Mech., 47, No. 1, 2–44 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    A. N. Guz, J. J. Rushchitsky, and I. A. Guz, Introduction to the Mechanics of Nanocomposites [in Russian], Inst. Mekh. im. S. P. Timoshenko, Kyiv (2010).Google Scholar
  20. 20.
    L. J. Broutman and R. H. Krock (eds.), Composite Materials, in 8 vols., Academic Press, New York–London (1974–1975).Google Scholar
  21. 21.
    R. M. Christensen, Mechanics of Composite Materials, Wiley, New York (1979).Google Scholar
  22. 22.
    A. N. Guz (ed.), Mechanics of Composite Materials [in Russian], in 12 vols., Naukova Dumka (Vols. 1–4), A.S.K. (Vols. 5–12), Kyiv (1993–2003).Google Scholar
  23. 23.
    B. W. Rosen, “Mechanics of composite strengthening,” in: Fiber Composite Materials, American Society of Metals, Metals Park, Ohio (1965), pp. 37–75.Google Scholar
  24. 24.
    J. J. Rushchitsky, Elements of Mixture Theory [in Russian], Naukova Dumka, Kyiv (1991).Google Scholar
  25. 25.
    I. P. Suzdalev, Nanotechnology: Physics and Chemistry of Nanoclusters, Nanostructures, and Nanomaterials [in Russian], KomKniga, Moscow (2006).Google Scholar
  26. 26.
    Y. M. Tarnopolskiy and A. V. Roze, Characteristics for Calculating Parts Made of Reinforced Plastics, NASA-TM-75915 (1981).Google Scholar
  27. 27.
    A. D. Akbarov and A. N. Guz, “Method of solving problems in mechanics of composite materials with bent layers,” Int. Appl. Mech., 20, No. 4, 299–304 (1984).ADSMATHGoogle Scholar
  28. 28.
    A. D. Akbarov and A. N. Guz, “Method of solving problems in mechanics of fiber composites with curved structures,” Int. Appl. Mech., 20, No. 9, 777–784 (1984).ADSMATHGoogle Scholar
  29. 29.
    A. D. Akbarov and A. N. Guz, “Model of a piecewise-homogeneous body in the mechanics of laminar composites with fine-scale curvatures,” Int. Appl. Mech., 21, No. 4, 313–318 (1985).ADSMATHGoogle Scholar
  30. 30.
    A. D. Akbarov and A. N. Guz, “Stress state of a fiber composite with curved structures with a low fiber concentration,” Int. Appl. Mech., 21, No. 6, 560–565 (1985).ADSGoogle Scholar
  31. 31.
    A. D. Akbarov and A. N. Guz, Mechanics of Curved Composites, Kluwer, Dordrecht (2000).MATHCrossRefGoogle Scholar
  32. 32.
    A. D. Akbarov and A. N. Guz, “Continuum approaches in the mechanics of curved composites and associated problems for structural members,” Int. Appl. Mech., 38, No. 11, 1285–1308 (2002).CrossRefGoogle Scholar
  33. 33.
    A. D. Akbarov and A. N. Guz, “Mechanics of curved composites (piecewise-homogeneous body model),” Int. Appl. Mech., 38, No. 12, 1415–1439 (2002).CrossRefGoogle Scholar
  34. 34.
    A. D. Akbarov and A. N. Guz, “Mechanics of curved composites and some related problems for structural members,” Mech. Adv. Mater. Struct., 11, No. 6, Part II, 445–516 (2004).CrossRefGoogle Scholar
  35. 35.
    M. Brinkmann, F. Chandezon, R. B. Pansu, and C. Julien-Rabant, “Epitaxial growth of highly oriented fibers of semiconducting polymers with shish-kebab-like superstructure,” Adv. Funct. Mater., 19, 2759–2766 (2009).CrossRefGoogle Scholar
  36. 36.
    C. Cattani and J. J. Rushchitsky, Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructures, World Scientific Publishing, Singapore–London (2007).CrossRefGoogle Scholar
  37. 37.
    C. Cattani, J. J. Rushchitsky, and S. V. Sinchilo, “Physical constants for one type of nonlinearly elastic fibrous micro- and nanocomposites with hard and soft nonlinearities,” Int. Appl. Mech., 41, No. 12, 1368–1377 (2005).ADSCrossRefGoogle Scholar
  38. 38.
    A. N. Cleland, Foundations of Nanomechanics. From Solid-State Theory to Device Applications, Series “Advanced Texts in Physics,” Springer-Verlag, Berlin (2003).Google Scholar
  39. 39.
    R. M. Christensen ad K. H. Lo, “Solutions for effective shear properties in three phase sphere and cylinder models,” J. Mech. Phys. Solids, 27, 315–330 (1979).ADSMATHCrossRefGoogle Scholar
  40. 40.
    R. M. Christensen, “A critical evaluation for a class of micromechanics models,” J. Mech. Phys. Solids, 38, 379–404 (1990).ADSCrossRefGoogle Scholar
  41. 41.
    R. M. Christensen, “Two theoretical elasticity micromechanics models,” J. Elasticity, 50, 15–25 (1998).MATHCrossRefGoogle Scholar
  42. 42.
    M. Endo, Y. A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, et al., “Structural characteristization of cup-packed-type nanofibers with an entirely hollow core,” Appl. Phys. Lett., 80, No. 7, 1267–1269 (2002).ADSCrossRefGoogle Scholar
  43. 43.
    M. Endo, Y. A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, et al., “Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers,” Nanoletters, 3, No. 6, 723–726 (2003).ADSCrossRefGoogle Scholar
  44. 44.
    A. N. Guz, “On quasi-regularity of infinite systems for a spherical shell weakened by several openings,” Int. Appl. Mech., 2, No. 3, 79–80 (1966).ADSGoogle Scholar
  45. 45.
    A. N. Guz, “Solving the second plane dynamic problem of elasticity theory for multiply connected domains,” Int. Appl. Mech., 2, No. 8, 74–78 (1966).MathSciNetADSGoogle Scholar
  46. 46.
    A. N. Guz, “Mechanics of composite materials with a small-scale structural flexure,” Int. Appl. Mech., 19, No. 5, 383–392 (1983).MathSciNetADSMATHGoogle Scholar
  47. 47.
    A. N. Guz, “Quasi-uniform states in composites with small-scale curvatures in the structure,” Int. Appl. Mech., 19, No. 6, 479–489 (1983).ADSMATHGoogle Scholar
  48. 48.
    A. N. Guz and I. A. Guz, “On models in the theory of stability of multi-walled carbon nanotubes,” Int. Appl. Mech., 42, No. 6, 617–628 (2006).MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    A. N. Guz, J. J. Rushchitsky, and I. A. Guz, “Establishing fundamentals of the mechanics of nanocomposites,” Int. Appl. Mech., 43, No. 3, 247–271 (2007).ADSCrossRefGoogle Scholar
  50. 50.
    A. N. Guz, J. J. Rushchitsky, and I. A. Guz, “Comparative computer modeling of carbon-polymer composites with carbon or graphite microfibers or carbon nanotubes,” CMRS, 17, No. 1, 44–59 (2007).Google Scholar
  51. 51.
    A. N. Guz, J. J. Rushchitsky, and I. A. Guz, “Establishing fundamentals of the mechanics of nanocomposites,” Int. Appl. Mech., 43, No. 3, 247–271 (2007).ADSCrossRefGoogle Scholar
  52. 52.
    I. A. Guz, A. N. Guz, and J. J. Rushchitsky, “Modelling properties of micro- and nanocomposites with brush-like reinforcement (Modellierung der Eigenschaften von Mikro und Nanoverbundwerkstoffen mit burstenartigen Verstarkungen),“ Math.-Wiss. und Werkstofftech, 40, No. 3, 33–39 (2009).Google Scholar
  53. 53.
    I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, “Prediction the properties of micro- and nanocomposites—from microwhiskers to bristled centipedes,” Philos. Trans. Royal Soc. London, 246, No. 3, 264–268 (2007).Google Scholar
  54. 54.
    I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, “Predicting the properties of nano-composites with brush-like reinforcement,” in: Abstracts of the Int. Conf. CNTNET 07 “Carbon Nano Tubes New Engineering Technologies,” University of Cambridge, Trinity College, September 10–12 (2007), p. 27.Google Scholar
  55. 55.
    I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, “Developing the mechanical models for nano-materials,” Composites. Part. A: Applied Science and Manufacturing, 38, No. 4, 1234–1250 (2007).CrossRefGoogle Scholar
  56. 56.
    I. A. Guz and J. J. Rushchitsky, “Comparison of mechanical properties and effects in micro and nanocomposites with carbon fillers (carbon microfibers, graphite microwhiskers and carbon nanotubes),” Mech.Comp. Mater., 40, No. 2, 179–190 (2004).CrossRefGoogle Scholar
  57. 57.
    I. A. Guz and J. J. Rushchitsky, “Comparing the evolution characteristics of waves in nonlinearly elastic micro- and nanocomposites with carbon fillers,” Int. Appl. Mech., 40, No. 7, 785–793 (2004).ADSCrossRefGoogle Scholar
  58. 58.
    I. A. Guz and J. J. Rushchitsky, “Computational simulation of harmonic wave propagation in fibrous micro– and nanocomposites with carbon or graphite microfibers or carbon nanotubes,” Compos. Sci. Technol., 64, No. 4, 861–866 (2007).CrossRefGoogle Scholar
  59. 59.
    I. A. Guz, J. J. Rushchitsky, and A. N. Guz, “Mechanical models in nanomaterials,” in: K. D. Sattler (ed.), Handbook of Nanophysics, Vol. 1: Principles and Methods, Taylor & Francis Publisher (CRC Press), Boca Raton (2010), pp. 24.1–24.12.Google Scholar
  60. 60.
    H. S. Katz and J. V. Milewski (eds.), Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold Company, New York (1978).Google Scholar
  61. 61.
  62. 62.
    Y.-A. Kim, T. Hayashi, S. Naokawa, T. Yanagisawa, and M. Endo, “Comparative study of herringbone and stacked-cup carbon nanofibers,” Carbon, 45, 3005–3008 (2005).CrossRefGoogle Scholar
  63. 63.
    J. H. Koo, Polymer Nanocomposites: Processing, Characterization, and Application, McGraw-Hill, New York (2006).Google Scholar
  64. 64.
    S. Ladden, “Knedel-like nanoparticles,” Math.-Wiss. und Werkstofftech, 40, No. 3, 45 (2009).Google Scholar
  65. 65.
    H. Le Quang and Q.-C. He, “A one-parameter general self-consistent model for isotropic multi-phase composites,” Int. J. Solids Struct., 44, 6805–6825 (2007).MATHCrossRefGoogle Scholar
  66. 66.
    G. Wilde (ed.), Nanostructured Materials, Elsevier, Amsterdam (2009).Google Scholar
  67. 67.
    A. M. Nystrom, J. W. Bartels, W.-J. Du, and K. I. Wooley, “Perfluorocarbon-loaded shell crosslink knedel-like nanoparticles: Lessons regarding polymer mobility and self-assembly,” J. Polymer Science: Part A: Polymer Chemistry, 47, 1023–1037 (2009).ADSCrossRefGoogle Scholar
  68. 68.
    Y.-W. Mai and Z.-Z. Yu (eds.), Polymer Nanocomposites, Woodhead Publishing Limited, Cambridge (2009).Google Scholar
  69. 69.
    R. K. Gupta, E. Kennel, and K.-J. Kim (eds.), Polymer Nanocomposites Handbook, Taylor & Francis Group/CRC Press, Boca Raton–London (2010).Google Scholar
  70. 70.
    J. Ramsden, Nanotechnology, Ventus Publishing ApS (2010).Google Scholar
  71. 71.
    READE.com: READE Advanced Materials —Filler Reinforcements (2007).Google Scholar
  72. 72.
    M. Roukes, “Nanoelectromechanical systems face the future,” Physics World, 14, No. 2 (2001).Google Scholar
  73. 73.
    E. T. Thostenson, C. Li, and T.-W. Chou, “Nanocomposites in context (review),” Compos. Sci. Technol., 65, 491–516 (2005).CrossRefGoogle Scholar
  74. 74.
    H. D. Wagner, “Nanotubes and nanocomposites. Science fiction or practical reality? Wagner-class_14-last.htm http://www.weizmann.ac.il/wagner/Courses/composites/Courses.html (2009).
  75. 75.
    Y. Wang, Z. Tang, X. Liang, L. M. Liz-Marzan, and N. A. Kotov, “SiO2-coated CdTe nanowires: bristled nanocentipedes,” Nano Letters, No. 2, 225–231 (2004).Google Scholar
  76. 76.
    N. Wilson, K. Kannangara, G. Smith, M. Simmons, and B. Raguse, Nanotechnology. Basic Science and Emerging Technologies, Chapman & Hall/CRC, Boca Raton–London (2002).CrossRefGoogle Scholar
  77. 77.
    M. Zhang and J. Li, “Carbon nanotube in different shapes,” Materials Today, 12, No. 6, 12–18 (2009).CrossRefGoogle Scholar
  78. 78.
    K. D. Sattler (ed.), Handbook of Nanophysics, in 7 vols., Vol. 1: Principles and Methods, Vol. 2: Clusters and Fullerenes, Vol. 3: Nanoparticles and Quantum Dots, Vol. 4: Nanotubes and Nanowires, Vol. 5: Functional Nanomaterials, Vol. 6: Nanoelectronics and Nanophotonics, Vol. 7: Nanomedicine and Nanorobotics, Taylor & Francis Group/CRC Press, Boca Raton–London (2011).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations