Geometrically nonlinear finite-element models for thin shells with geometric imperfections

  • E. A. Gotsulyak
  • O. K. Luk’yanchenko
  • E. V. Kostina
  • I. G. Garan

A finite-element method to analyze the stress–strain state and stability of thin shells with geometric imperfections is proposed. An arbitrary curvilinear finite element with vector approximation of the displacement function is used. To solve the systems of nonlinear algebraic equations by iteration methods, linearized stiffness matrices of finite elements and residual and load vectors are formed. The stress–strain state of a thin-walled shell with real geometric imperfections under surface pressure and axial compression is analyzed. The effect of geometric imperfections on the critical combination of loads is evaluated


thin shell geometric imperfection curvilinear finite element vector approximation geometrically nonlinear model iteration method 


  1. 1.
    G. D. Gavrilenko, ”Numerical and analytical approaches to the stability analysis of imperfect shells,” Int. Appl. Mech., 39, No. 9, 1029–1045 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    G. D. Gavrilenko, Load-Bearing Capacity of Imperfect Shells [in Russian], Barviks, Dnepropetrovsk (2007).Google Scholar
  3. 3.
    G. D. Gavrilenko and V. I. Matsner, ”Influence of axisymmetric dents in ribbed shells on minimum critical loads,” Int. Appl. Mech., 43, No. 5, 534–538 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    E. O. Gotsulyak and N. E. Aranchii, ”Vector approximation of the displacements of curvilinear finite element in shell buckling problems,” Dop. NAS Ukrainy, No. 10, 53–61 (2001).Google Scholar
  5. 5.
    E. A. Gotsulyak, O. A. Luk’yanchenko, O. V. Kostina, and V. V. Shakh, ”Stability of the walls of cylindrical shells with geometric imperfections under combined loading,” in: Strength of Materials and Theory of Structures, Issue 79, KNUBA, Kyiv (2006), pp. 63–72.Google Scholar
  6. 6.
    V. S. Hudramovych, ”Features of nonlinear deformation and critical states of shell systems with geometrical imperfections,” Int. Appl. Mech., 42, No. 12, 1323–1355 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    S. Yu. Eremenko, Finite-Element Methods in Solid Mechanics [in Russian], Osnova, Kharkiv (1991).Google Scholar
  8. 8.
    W. T. Koiter, “Elastic stability and postbuckling behavior,” in: R. E. Langee (ed.), Proc. Symp. on Nonlinear Problems, Univ. Press, Madison (1963), pp. 257–275.Google Scholar
  9. 9.
    V. N. Paimushin, ”Problems of geometric non-linearity and stability in the mechanics of thin shells and rectilinear columns,” J. Appl. Math. Mech., 71, No. 5, 772–805 (2007).MathSciNetCrossRefGoogle Scholar
  10. 10.
    L. H. Donnell, ”A new theory for the buckling of thin-walled cylinders under axial compression and bending,” Trans. ASME, 56, No. 11, 795–806 (1934).Google Scholar
  11. 11.
    G. D. Gavrilenko, ”Stability of compressed cylindrical shells with localized asymmetric deflections,” Int. Appl. Mech., 46, No. 1, 54–59 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    G. D. Gavrilenko and V. I. Matsner, ”Effect of localized imperfections on the critical loads of ribbed shells,” Int. Appl. Mech., 46, No. 7, 771–775 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    E. A. Gotsulyak, O. A. Luk’yanchenko, and V. V. Shakh, ”On stability of cylindrical shells of variable thickness with initial imperfections,” Int. Appl. Mech., 45, No. 4, 433–436 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • E. A. Gotsulyak
    • 1
  • O. K. Luk’yanchenko
    • 1
  • E. V. Kostina
    • 1
  • I. G. Garan
    • 1
  1. 1.National University of Construction and ArchitectureKyivUkraine

Personalised recommendations