Advertisement

Stability of the stationary motion of a double pendulum interacting with a string

  • D. M. Lila
Article
  • 70 Downloads

The equation of in-plane vertical motion of a double pendulum suspended at some point of a horizontal elastic string is derived using a hybrid model of this mechanical system. The conditions for the asymptotic stability of the stationary motion of the pendulum interacting with the string are established

Keywords

double pendulum elastic string hybrid model stability of stationary motion 

References

  1. 1.
    Lj. T. Grujic, A. A. Martynyuk, and M. Ribbens-Pavella, Large-Scale Systems Stability under Structural and Singular Perturbations, Springer-Verlag, Berlin (1987).MATHCrossRefGoogle Scholar
  2. 2.
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Wiley, New York (1989).CrossRefGoogle Scholar
  3. 3.
    D. M. Lila, Sufficient Stability Conditions for Nonstationary Large-Scale Mechanical Systems [in Ukrainian], Author’s Abstract of PhD Thesis in Theoretical Mechanics (01.02.01), Kyiv (2009).Google Scholar
  4. 4.
    D. M. Lila, Sufficient Stability Conditions for Nonstationary Large-Scale Mechanical Systems [in Ukrainian], PhD Thesis, Kyiv (2009).Google Scholar
  5. 5.
    A. P. Markeev, Theoretical Mechanics [in Russian], Nauka, Moscow (1990).Google Scholar
  6. 6.
    L. A. Pars, A Treatise on Analytical Dynamics, Wiley, New York (1965).MATHGoogle Scholar
  7. 7.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Izd. MGU, Moscow (2004).Google Scholar
  8. 8.
    I. Z. Shtokalo, “(In)stability criterion for the solutions of linear differential equations with quasi-periodic coefficients,” Mat. Sb., 19 (61), No. 2, 263–286 (1946).MathSciNetGoogle Scholar
  9. 9.
    I. Z. Shtokalo, Linear Differential Equations with Variable Coefficients, Gordon & Breach, New York (1961).Google Scholar
  10. 10.
    A. A. Burov, “Planar motion of an orbital pendulum with periodically oscillating point of suspension,” Cosmic Research, 45, No. 2, 167–169 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    A. Y. T. Leung and J. L. Kuang, “On the chaotic dynamics of a spherical pendulum with a harmonically vibrating suspension,” Nonlin. Dynam., 43, No. 3, 213–238 (2006).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    D. M. Lila, “Stability of motion of quasiperiodic systems in critical cases,” Int. Appl. Mech., 46, No. 2, 229–240 (2010).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    D. M. Lila, “Stability of some solutions of phase-matched generation equations for optically coupled lasers,” Int. Appl. Mech., 45, No. 3, 317–318 (2009).Google Scholar
  14. 14.
    D. M. Lila and A. A. Martynyuk, “Construction and applications of the matrix-valued Liapunov functions for some quasi-periodic systems,” Diff. Eqs. Dynam. Syst., 17, No. 1–2, 91–104 (2009).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    D. M. Lila and A. A. Martynyuk, “On stability of some solutions for equations of locked lasing of optically coupled lasers with periodic pumping,” Nonlin. Oscill., 12, No. 4, 464–473 (2009).CrossRefMathSciNetGoogle Scholar
  16. 16.
    D. M. Lila and A. A. Martynyuk, “On the theory of stability of matrix differential equations,” Ukr. Math. J., 61, No. 4, 556–565 (2009).MathSciNetCrossRefGoogle Scholar
  17. 17.
    D. M. Lila and A. A. Martynyuk, “Setting up Lyapunov functions for the class of systems with quasiperiodic coefficients,” Int. Appl. Mech., 44, No. 12, 1421–1429 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    D. M. Lila and A. A. Martynyuk, “Stability of periodic motions of quasilinear systems,” Int. Appl. Mech., 44, No. 10, 1161–1172 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    A. A. Martynyuk, Stability of Motion. The Role of Multicomponent Liapunov Functions, Cambridge Sci. Publ., Cambridge (2007).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.B. Khmelnitsky Cherkassy National UniversityCherkassyUkraine

Personalised recommendations