Measurement data handling in identification of mechanical systems

  • A. S. Apostolyuk
  • V. B. Larin

Integration algorithms for data handling in identification of linear stationary systems from sampled transient data are proposed. The problem of identification from several simultaneously measured phase coordinates is detailed. The identification procedure is generalized to the case of irregularly sampled data. The efficiency of the algorithms is demonstrated by examples


integration LTI system identification irregularly sampled data 


  1. 1.
    A. S. Apostolyuk, B. F. Bobrov, B. A. Bordyug, et al., Optimization of Prony’s Method in the Identification of Linear Dynamic Systems [in Russian], Prepr. No. 87–66, Inst. Mat., Kyiv (1987).Google Scholar
  2. 2.
    A. S. Apostolyuk and V. B. Larin, “On identification of linear stationary systems,” J. Automat. Inform. Sci., 40, No. 7, 37–47 (2008).CrossRefGoogle Scholar
  3. 3.
    R. N. Bakhtizin and A. R. Latypov, “Estimating the order of linear objects from experimental data,” Avtomat. Telemekh., No. 3, 108–112 (1992).Google Scholar
  4. 4.
    Yu. P. Ivanov, A. N. Sinyakov, and I. V. Filatov, Integration of Data Measuring Devices of Aircraft [in Russian], Mashinostroenie, Leningrad (1984).Google Scholar
  5. 5.
    M. S. Kay and S. L. Marple, Jr., “Spectrum analysis—A modem perspective,” in: Proc. IEEE, Vol. 69 (1981), pp. 1380–1419.Google Scholar
  6. 6.
    C. Lanczos, Applied Analysis, Englewood Cliffs, Prentice Hall (1956).Google Scholar
  7. 7.
    V. B. Larin, “Choosing the parameters of an instrument shock-proofing system,” Int. Appl. Mech., 2, No. 6, 57–60 (1966).MathSciNetADSGoogle Scholar
  8. 8.
    V. B. Larin, “Some issues in design of instrument vibration-isolation systems,” Mekh. Tverd. Tela, No. 6, 20–26 (1966).Google Scholar
  9. 9.
    V. B. Larin, Statistical Vibration-Isolation Problems [in Russian], Naukova Dumka, Kyiv (1974).Google Scholar
  10. 10.
    V. B. Larin, “Some optimization problems for vibroprotective systems,” Int. Appl. Mech., 37, No. 4, 456–483 (2001).CrossRefGoogle Scholar
  11. 11.
    L. Ljung, “Model accuracy in system identification,” in: Proc. IFAC Symp. on Intelligent Tuning and Adaptive Control, ITAC 91, Singapore, January 15–17 (1991).Google Scholar
  12. 12.
    A. A. Nemura, “Optimizing the time step in the identification of continuous-time dynamic systems and processes,” in: Abstracts of 7th All-Union Meeting on Control Problems (Minsk, Novemver 21–25, 1977), Book 1, Inst. Probl. Upravl., Inst. Tekhn. Kibern., Moscow–Minsk (1977), pp. 221–225.Google Scholar
  13. 13.
    B. T. Polyak and S. A. Nazin, “Estimation of parameters in linear multidimensional systems under interval uncertainty,” J. Automat. Inform. Sci., 38, No. 2, 19–3 (2006).CrossRefGoogle Scholar
  14. 14.
    A. V. Tobolski, Properties and Structure of Polymers, Wiley, New York (1960).Google Scholar
  15. 15.
    R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill, New York (1962).MATHGoogle Scholar
  16. 16.
    T. J. Abatzoglou, J. M. Mendel, and G. A. Harada, “The constrained total least squares technique and its applications to harmonic superresolution,” IEEE Trans. on Signal Processing, 39, No. 5, 1070–1086 (1991).CrossRefMATHADSGoogle Scholar
  17. 17.
    F. A. Aliev and V. B. Larin, “Parametrization of sets of stabilizing controllers in mechanical systems,” Int. Appl. Mech., 44, No. 6, 599–618 (2008).CrossRefADSGoogle Scholar
  18. 18.
    A. S. Apostolyuk and V. B. Larin, “On linear stationary system identification at regular and irregular measurements,” Appl. Comp. Math., 8, No. 1, 42–53 (2009).MATHMathSciNetGoogle Scholar
  19. 19.
    R. Bellman, “On the separation of exponentials,” Boll. Unione Matem. Ital., III, 15, No. 1, 38–39 (1960).Google Scholar
  20. 20.
    A. E. Bryson, Jr., “Some connections between modern and classical control concepts,” Trans. ASME. J. Dynam. Syst., Measur. Contr., 101, No. 6, 91–98 (1979).CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    R. D. DeGroat and E. M. Dowling, “The data least squares problem and channel equalization,” IEEE Trans. on Signal Processing, 41, No. 1, 407–411 (1993).CrossRefADSGoogle Scholar
  22. 22.
    L.V. Deychenkova and V. B. Larin, “The method of least squares used in the identification of vibromeasuring systems,” Soviet Autom. Contr., No. 3, 11–17 (1977).Google Scholar
  23. 23.
    S. D. Fassions, K. F. Eman, and S. M. Wu, “Sensitivity analysis of the discrete-to-continuous dynamic system transformation,” Trans. ASME. J. Dynam. Syst., Measur. Contr., 112, 1–9 (1990).CrossRefGoogle Scholar
  24. 24.
    H. Garnier and L. Wang (eds.), Identification of Continuous-Time Models from Sampled Data, Springer-Verlag, London (2008).Google Scholar
  25. 25.
    F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York (1956).MATHGoogle Scholar
  26. 26.
    Y. Hua and T. К. Sarkar, “Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise,” IEEE Trans. Acoustics, Speech and Signal Proc., 38, No. 5, 814–824 (1990).CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    T. Kailath, Linear Systems, Prentice-Hall, Englewoood Cliffs, N. J. (1980).MATHGoogle Scholar
  28. 28.
    V. B. Larin, “The use of matrix pencils in an identification problem,” J. Automat. Inform. Sci., 28, No. 3–4, 53–62 (1996).Google Scholar
  29. 29.
    V. B. Larin, “On stabilization of systems with delay,” Int. Appl. Mech., 44, No. 10, 1148–1160 (2008).CrossRefADSGoogle Scholar
  30. 30.
    V. B. Larin, “Control of a compound wheeled vehicle with two steering wheels,” Int. Appl. Mech., 44, No. 12, 1413–1420 (2008).CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    E. K. Larsson, M. Mossberg, and T. Sonderstrom, “Identification of continuous-time ARX model from irregularly sampled data,” IEEE Trans. Automat. Contr., 52, No. 3, 417–427 (2007).CrossRefGoogle Scholar
  32. 32.
    K. A. F. Moustafa, “Time-domain structural identification using free response measurements,” Int. J. Contr., 56, No. 1, 51–65 (1992).CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    V. U. Reddy and L. S. Biradar, “SVD-based information theoretic criteria for detection of the number of damped/undamped sinusoids and their performance analysis,” IEEE Trans. on Signal Processing, 41, No. 9, 2872–2881 (1993).CrossRefMATHADSGoogle Scholar
  34. 34.
    F. W. Smith, “System Laplace-transform estimation from sampled data,” IEEE Trans. Automat. Contr., 13, No. 1, 37–45 (1968).CrossRefGoogle Scholar
  35. 35.
    E. G. Yanyutin and S. I. Povalyaev, “Identification of nonstationary axisymmetric load distributed along a cylindrical shell,” Int. Appl. Mech., 44, No. 7, 794–801 (2008).CrossRefADSGoogle Scholar
  36. 36.
    A. V. Yasinskii, “Identification of the thermal and thermostressed states of a two-layer cylinder from surface displacement,” Int. Appl. Mech., 44, No. 1, 34–40 (2008).CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.National Technical University of Ukraine “KPI”KyivUkraine
  2. 2.S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations