International Applied Mechanics

, Volume 46, Issue 9, pp 1010–1018 | Cite as

Parametric vibrations of cylindrical shells subject to geometrically nonlinear deformation: multimode models

  • R. E. Kochurov
  • K. V. Avramov

The nonlinear parametric vibrations of cylindrical shell are described by the Donnell–Mushtari–Vlasov equations. The motions are represented as a mode expansion. Discretization is performed using the Bubnov–Galerkin method. The describing-function method is used to study traveling waves and nonlinear normal modes in systems with and without dissipation


parametric vibrations multimode model Donnell–Mushtari–Vlasov equations describing function method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. V. Avramov, “Nonlinear normal modes of parametric vibrations,” Dop. NAN Ukrainy, No. 11, 41–47 (2008).Google Scholar
  2. 2.
    A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells [in Russian], Nauka, Moscow (1972).Google Scholar
  3. 3.
    V. D. Kubenko, P. S. Koval’chuk, and T. S. Krasnopol’skaya, Nonlinear Interaction of Flexural Vibration Modes of Cylindrical Shells [in Russian], Naukova Dumka, Kyiv (1984).Google Scholar
  4. 4.
    V. D. Kubenko, P. S. Koval’chuk, and N. P. Podchasov, Nonlinear Vibrations of Cylindrical Shells [in Russian], Vyshcha Shkola, Kyiv (1989).MATHGoogle Scholar
  5. 5.
    K. Avramov, “Nonlinear modes of parametric vibrations and their applications to beams dynamics,” J. Sound Vibr., 322, 476–489 (2009).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    P. B. Goncalves and Z. J. G. N. Del Prado, “Nonlinear oscillations and stability of parametrically excited cylindrical shells,” Meccanica, 36, 105–116 (2002).Google Scholar
  7. 7.
    P. S. Koval’chuk and L. A. Kruk, “Forced nonlinear oscillations of cylindrical shells interacting with fluid flow,” J. Sound Vibr., 265, 245–268 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    V. D. Kubenko and P. S. Koval’chuk, “Nonlinear problems of oscillations of thin shells,” Int. Appl. Mech., 34, No. 8, 703–728 (1998).MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. D. Kubenko, P. S. Koval’chuk, and L. A. Kruk, “Non-linear interaction of bending deformations of free-oscillating cylindrical shells,” J. Sound Vibr., 265, 245–268 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    F. Pellicano and M. Amabili, “Stability and vibration of empty and fluid-fillet circular cylindrical shells under static and periodic axial loads,” Int. J. Solid Struct., 40, 3229–3251 (2003).MATHCrossRefGoogle Scholar
  11. 11.
    N. Yamaki, Elastic Stability of Circular Cylindrical Shells, North-Holland, Amsterdam (1984).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.National Technical University “Kharkov Polytechnic Institute”KharkovUkraine
  2. 2.A. N. Podgornyi Institute for Problems of Mechanical EngineeringNational Academy of Sciences of UkraineKharkivUkraine

Personalised recommendations