Advertisement

International Applied Mechanics

, Volume 46, Issue 6, pp 718–729 | Cite as

Dynamics of the orbital deployment of an elastic ring-shaped antenna

  • A. E. Zakrzhevskii
  • V. S. Khoroshilov
Article

A generalized mathematical model of an unguided spacecraft that carries an elastic body of variable geometry (a deployable ring-shaped antenna) is constructed. Its dynamics is simulated numerically

Keywords

flexible spacecraft antenna deployment mathematical model numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Beletskii, Motion of an Artificial Satellite about Its Center of Mass, NASA TT F-429, Washington (1966).Google Scholar
  2. 2.
    V. N. Branets and I. P. Shmyglevskii, Quaternions in Problems of Rigid-Body Orientation [in Russian], Nauka, Moscow (1973).Google Scholar
  3. 3.
    J. Wittenburg, Dynamics of Systems of Rigid Bodies, B. G. Teubner, Stuttgart (1997).Google Scholar
  4. 4.
    A. I. Lurie, Analytical Mechanics, Springer, Berlin–New York (2002).MATHGoogle Scholar
  5. 5.
    S. P. Timoshenko, Vibrations in Engineering [in Russian], Fizmatgiz, Moscow (1959).Google Scholar
  6. 6.
    K. V. Avramov, C. Pierre, and N. V. Shyryaeva, “Nonlinear equations of flexural–torsional oscillations of rotating beams with arbitrary cross-section,” Int. Appl. Mech., 44, No. 5, 582–589 (2008).CrossRefGoogle Scholar
  7. 7.
    V. B. Larin, “On stabilization of systems with delay,” Int. Appl. Mech., 44, No. 10, 1148–1160 (2008).CrossRefGoogle Scholar
  8. 8.
    A. Prokić and D. Lukić, “Dynamic behavior of braced thin-walled beams,” Int. Appl. Mech., 43, No. 11, 1290–1303 (2007).CrossRefGoogle Scholar
  9. 9.
    T. V. Zavrazhina, “Influence of the flexibility of links on the dynamics of a multilink robot manipulator,” Int. Appl. Mech., 43, No. 5, 577–585 (2007).CrossRefGoogle Scholar
  10. 10.
    A. E. Zakrzhevskii and A. V. Pirozhenko, “Motion parameters of an electrodynamic tether in orbit,” Int. Appl. Mech., 43, No. 3, 335–343 (2007).CrossRefGoogle Scholar
  11. 11.
    A. E. Zakrzhevskii, “Slewing of flexible spacecraft with minimal relative flexible acceleration,” J. Guid. Contr. Dynam., 31, No. 3, May–June, 563–570 (2008), DOI: 10.2514/1.32215.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of UkraineKyivUkraine
  2. 2.M. K. Yangel’ State Design Office “Yuzhnoe”DnepropetrovskUkraine

Personalised recommendations