International Applied Mechanics

, Volume 46, Issue 6, pp 687–695 | Cite as

Electroelastic state of an infinite multiply connected piezoelectric plate with known electric potentials applied to its boundaries

  • K. G. Khoroshev

Generalized complex potentials, their expressions for a domain with elliptic holes, and the discrete least-squares method are used to analyze the generalized plane electroelastic state of a piezoelectric plate having holes and cracks with electric potentials applied to their boundaries. There are no mechanical loads. A numerical analysis is conducted. The effect of the applied voltage on the electroelastic state of the plate is examined


electroelasticity piezoelectric plate multiply connected domain crack electric potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. A. Glushchenko and K. G. Khoroshev, “Electroelastic state of a finite piezoelectric plate with holes and cracks and known potentials applied to the boundaries,” Visn. Donets. Univ., Ser. A. Pryrod. Nauky, No. 1, 211–218 (2008).Google Scholar
  2. 2.
    V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity, Vol. 5 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kyiv (1989).Google Scholar
  3. 3.
    S. A. Kaloerov, A. I. Baeva, and O. I. Boronenko, Two-Dimensional Problems of Electro- and Magnetoelasticity for Multiply Connected Media [in Russian], Yugo-Vostok, Donetsk (2007).Google Scholar
  4. 4.
    S. A. Kaloerov and E. S. Goryanskaya, “Two-dimensional stress–strain state of a multiply connected anisotropic body,” in: Stress Concentration, Vol. 7 of the 12-volume series Mechanics of Composite Materials [in Russian], A.S.K., Kyiv (1998), pp. 10–26.Google Scholar
  5. 5.
    W. G. Cady, Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, Dover, New York (1964).Google Scholar
  6. 6.
    V. N. Lozhkin and L. N. Oleinik, “Stress state of a thin piezoelectric plate with an elliptic hole,” Mekh. Tverd. Tela, No. 8, 127–130 (1976).Google Scholar
  7. 7.
    W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics, Van Nostrand, New York (1950).Google Scholar
  8. 8.
    J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, Oxford (1957).MATHGoogle Scholar
  9. 9.
    W. Nowacki, Electromagnetic Effects in Solids [in Polish], PWN, Warsaw (1983).Google Scholar
  10. 10.
    V. Z. Parton and B. A. Kudryavtsev, Electromagnetoelasticity of Piezoelectric and Electroconductive Bodies [in Russian], Nauka, Moscow (1988).Google Scholar
  11. 11.
    D. I. Bardzokas, A. I. Zobnin, N. A. Senik, et al., Static and Dynamic Problems of Electroelasticity for Compound Multiply Connected Bodies, Vol. 2 of the two-volume series Mathematical Modeling in Problems of the Mechanics of Coupled Fields [in Russian], KomKniga, Moscow (2005).Google Scholar
  12. 12.
    L. P. Khoroshun, B. P. Maslov, and P. V. Leshchenko, Predicting the Effective Properties of Piezoelecritc Composites [in Russian], Naukova Dumka, Kyiv (1989).Google Scholar
  13. 13.
    M. O. Shul’ga and V. L. Karlash, Resonant Electromechanical Vibrations of Piezoelectric Plates [in Ukrainian], Naukova Dumka, Kyiv (2008).Google Scholar
  14. 14.
    D. Berlincourt and H. H. A. Krueger, Properties of Piezoelectricity Ceramics, Technical Publication TP-226,
  15. 15.
    M. L. Dunn, “Micromechanics of coupled electroelastic composites: Effective thermal expansion and pyroelectric coefficients,” J. Appl. Phys., 73, 5131–5140 (1993).CrossRefADSGoogle Scholar
  16. 16.
    Gao Cunfa and Fan Weixun, “The fundamental solutions for the plane problem in piezoelectric media with an elliptic hole or a crack,” Appl. Math. Mech., 19, No. 11, 1043–1052 (1998).MATHCrossRefGoogle Scholar
  17. 17.
    S. A. Kaloerov, “Determining the intensity factors for stresses, electric-flux density, and electric-field strength in multiply connected electroelastic anisotropic media,” Int. Appl. Mech., 43, No. 6, 631–637 (2007).CrossRefGoogle Scholar
  18. 18.
    V. G. Karnaukhov and Ya. V. Tkachenko, “Damping the vibrations of a rectangular plate with piezoelectric actuators,” Int. Appl. Mech., 44, No. 2, 182–187 (2008).CrossRefGoogle Scholar
  19. 19.
    V. S. Kirilyuk, “Elastic state of a ttransversely isotropic piezoelectric body with an arbitrarily oriented elliptic crack,” Int. Appl. Mech., 44, No. 2, 150–157 (2008).CrossRefMathSciNetGoogle Scholar
  20. 20.
    V. S. Kirilyuk and O. I. Levchuk, “Electroelastic stress state of a piezoceramic body with a paraboloidal cavity,” Int. Appl. Mech., 42, No. 9, 1011–1020 (2006).CrossRefGoogle Scholar
  21. 21.
    J. X. Liu, X. S. Zhang, X. L. Liu, and J. Zheng, “Anisotropic thermopiezoelectric solids with an elliptic inclusion or a hole under uniform heat flow,” Acta Mech. Sinica., 16, 148–163 (2000).CrossRefGoogle Scholar
  22. 22.
    R. D. Mindlin, “Equation of high frequency vibration of thermopiezoelectric crystal plates,” Int. J. Sol. Struct., 10, No. 6, 625–637 (1974).MATHCrossRefGoogle Scholar
  23. 23.
    H. F. Tiersten, Linear Theory of Piezoelectric Plate Vibrations, Plenum Press, New York (1969).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.National University of TransportKyivUkraine

Personalised recommendations