Skip to main content
Log in

Deformation and long-term damage of layered materials with stress-rupture microstrength described by an exponential power function

  • Published:
International Applied Mechanics Aims and scope

The theory of long-term damage of homogeneous materials is generalized to layered materials. The damage of the components is modeled by randomly dispersed micropores. The damage criterion for a microvolume is characterized by its stress-rupture strength. It is determined by the exponential power dependence of the time to brittle failure on the difference between the equivalent stress and its limit, which is the tensile strength, according to the Huber–Mises criterion, and assumed to be a random function of coordinates. An equation of damage (porosity) balance in the components at an arbitrary time is formulated. Algorithms of calculating the time dependence of microdamage and macrostresses or macrostrains are developed and corresponding curves are plotted in the case of exponential power microdurability function

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ya. S. Berezikovich, Approximate Calculation [in Russian], GITTL, Moscow–Leningrad (1949).

  2. A. N. Guz, L. P. Khoroshun, G. A. Vanin, et al., Materials Mechanics, Vol. 1 of the three-volume series Mechanics of Composites and Structural Members [in Russian], Naukova Dumka, Kyiv (1982).

  3. L. M. Kachanov, Fundamentals of Fracture Mechanics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  4. A. F. Kregers, “Mathematical modeling of the thermal expansion of spatially reinforced composites,” Mech. Comp. Mater., 24, No. 3, 316–325 (1988).

    Article  Google Scholar 

  5. V. P. Tamusz and V. S. Kuksenko, Microfracture Mechanics of Polymeric Materials [in Russian], Zinatne, Riga (1978).

    Google Scholar 

  6. L. P. Khoroshun, “Saturated porous media,” Int. Appl. Mech., 12, No. 12, 1231–1237 (1976).

    MATH  Google Scholar 

  7. L. P. Khoroshun, “Methods of theory of random functions in problems of macroscopic properties of microinhomogeneous media,” Int. Appl. Mech., 14, No. 2, 113–124 (1978).

    MATH  MathSciNet  Google Scholar 

  8. L. P. Khoroshun “Conditional-moment method in problems of the mechanics of composite materials,” Int. Appl. Mech., 23, No. 10, 989–996 (1987).

    MATH  Google Scholar 

  9. L. P. Khoroshun, B. P. Maslov, E. N. Shikula, and L. V. Nazarenko, Statistical Mechanics and Effective Properties of Materials, Vol. 3 of the 12-volume series Mechanics of Composite Materials [in Russian], Naukova Dumka, Kyiv (1993).

  10. L. P. Khoroshun and E. N. Shikula, “Influence of temperature on the microdamageability of a particulate material,” Visn. Kyiv. Univ., Ser. Fiz.-Mat. Nauky, No. 5, 382–387 (2001).

    Google Scholar 

  11. L. P. Khoroshun, “Principles of the micromechanics of material damage. 1. Short-term damage,” Int. Appl. Mech., 34, No. 10, 1035–1041 (1998).

    Article  Google Scholar 

  12. L. P. Khoroshun, “Micromechanics of short-term thermal microdamageability,” Int. Appl. Mech., 37, No. 9, 1158–1165 (2001).

    Article  Google Scholar 

  13. L. P. Khoroshun, “Principles of the micromechanics of material damage. 2. Long-term damage,” Int. Appl. Mech., 43, No. 2, 217–227 (2007).

    Article  Google Scholar 

  14. L. P. Khoroshun and E. N. Shikula, “The theory of short-term microdamageability of granular composite materials,” Int. Appl. Mech., 36, No. 8, 1060–1066 (2000).

    Article  Google Scholar 

  15. L. P. Khoroshun and E. N. Shikula, “Simulation of the short-term microdamageability of laminated composites,” Int. Appl. Mech., 36, No. 9, 1181–1186 (2000).

    Article  Google Scholar 

  16. L. P. Khoroshun and E. N. Shikula, “Short-term microdamageability of fibrous composites with transversally isotropic fibers and a microdamaged binder,” Int. Appl. Mech., 36, No. 12, 1605–1611 (2000).

    Article  Google Scholar 

  17. L. P. Khoroshun and E. N. Shikula, “The micromechanics of short-term damageability of fibrolaminar composites,” Int. Appl. Mech., 36, No. 5, 638–646 (2001).

    Article  Google Scholar 

  18. L. P. Khoroshun and E. N. Shikula, “A note on the theory of short-term microdamageability of granular composites under thermal actions,” Int. Appl. Mech., 38, No. 1, 60–67 (2002).

    Article  MATH  Google Scholar 

  19. L. P. Khoroshun and E. N. Shikula, “Short-term microdamageability of laminated materials under thermal actions,” Int. Appl. Mech., 38, No. 4, 432–439 (2002).

    Article  Google Scholar 

  20. L. P. Khoroshun and E. N. Shikula, “Short-term microdamageability of fibrous materials with transversely isotropic fibers under thermal actions,” Int. Appl. Mech., 38, No. 6, 701–709 (2002).

    Article  Google Scholar 

  21. L. P. Khoroshun and E. N. Shikula, “Short-term damage micromechanics of laminated fibrous composites under thermal actions,” Int. Appl. Mech., 38, No. 9, 1083–1093 (2002).

    Article  Google Scholar 

  22. L. P. Khoroshun and E. N. Shikula, “Theory of short-term microdamageability for a homogeneous material under physically nonlinear deformation,” Int. Appl. Mech., 40, No. 4, 388–395 (2004).

    Article  Google Scholar 

  23. L. P. Khoroshun and E. N. Shikula, “Short-term microdamageability of granular material under physically nonlinear deformation,” Int. Appl. Mech., 40, No. 6, 656–663 (2004).

    Article  Google Scholar 

  24. L. P. Khoroshun and E. N. Shikula, “Influence of physically nonlinear deformation on short-term microdamage of a laminar material,” Int. Appl. Mech., 40, No. 8, 878–885 (2004).

    Article  Google Scholar 

  25. L. P. Khoroshun and E. N. Shikula, “Influence of physically nonlinear deformation on short-term microdamage of a fibrous material,” Int. Appl. Mech., 40, No. 10, 1137–1144 (2004).

    Google Scholar 

  26. L. P. Khoroshun and E. N. Shikula, “Deformation of particulate composite with physically nonlinear inclusions and microdamageable matrix,” Int. Appl. Mech., 41, No. 2, 111–117 (2005).

    Article  Google Scholar 

  27. L. P. Khoroshun and E. N. Shikula, “Influence of the physical nonlinearity of matrix on the deformation of a particulate composite with microdamageable inclusions,” Int. Appl. Mech., 41, No. 4, 345–351 (2005).

    Article  Google Scholar 

  28. L. P. Khoroshun and E. N. Shikula, “Deformation of a laminated composite with a physically nonlinear reinforcement and microdamageable matrix,” Int. Appl. Mech., 41, No. 11, 1246–1253 (2005).

    Article  Google Scholar 

  29. L. P. Khoroshun and E. N. Shikula, “Short-term microdamage of a laminated material with nonlinear matrix and microdamaged reinforcement,” Int. Appl. Mech., 41, No. 12, 1331–1338 (2005).

    Article  Google Scholar 

  30. L. P. Khoroshun and E. N. Shikula, “Deformation of fibrous composite with physically nonlinear fibers and microdamageable matrix,” Int. Appl. Mech., 42, No. 1, 32–39 (2006).

    Article  Google Scholar 

  31. L. P. Khoroshun and E. N. Shikula, “Short-term microdamageability of a fibrous composite with physically nonlinear matrix and microdamaged reinforcement,” Int. Appl. Mech., 42, No. 2, 127–135 (2006).

    Article  Google Scholar 

  32. L. P. Khoroshun and E. N. Shikula, “Short-term microdamage of a physically nonlinear particulate material under a combination of normal and tangential loads,” Int. Appl. Mech., 42, No. 12, 1356–1363 (2006).

    Article  Google Scholar 

  33. L. P. Khoroshun and E. N. Shikula, “Short-term microdamage of a physically nonlinear fibrous material under simultaneous normal and tangential loads,” Int. Appl. Mech., 43, No. 3, 282–290 (2007).

    Article  Google Scholar 

  34. L. P. Khoroshun and E. N. Shikula, “Short-term microdamage of a physically nonlinear laminate under simultaneous normal and tangential loads,” Int. Appl. Mech., 43, No. 4, 409–417 (2007).

    Article  Google Scholar 

  35. L. P. Khoroshun and E. N. Shikula, “Mesomechanics of deformation and short-term damage of linear elastic homogeneous and composite materials,” Int. Appl. Mech., 43, No. 6, 591–620 (2007).

    Article  Google Scholar 

  36. L. P. Khoroshun and E. N. Shikula, “Deformation and long-term damage of particulate composites with stress-rupture microstrength described by a fractional-power function,” Int. Appl. Mech., 44, No. 10, 1075–1083 (2008).

    Article  Google Scholar 

  37. L. P. Khoroshun and E. N. Shikula, “Micromechanics of long-term damage of particulate composites with unlimited microdurability,” Int. Appl. Mech., 44, No. 11, 1204–1212 (2008).

    Article  Google Scholar 

  38. W. A. Weibull, “A statistical theory of the strength of materials,” Proc. Roy. Swed. Inst. Eng. Res., No. 151, 5–45 (1939).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Khoroshun.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 45, No. 8, pp. 86–97, August 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoroshun, L.P., Shikula, E.N. Deformation and long-term damage of layered materials with stress-rupture microstrength described by an exponential power function. Int Appl Mech 45, 873–881 (2009). https://doi.org/10.1007/s10778-009-0233-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-009-0233-4

Keywords

Navigation