International Applied Mechanics

, Volume 45, Issue 1, pp 66–72 | Cite as

Method of characteristics in electroelastic analysis of a layer subject to dynamic mechanical loading


The paper proposes an analytic procedure based on the method of characteristics to study the nonstationary thickness vibration of a piezoelectric layer polarized across the thickness and subjected to dynamic mechanical loading. The problem is solved for a suddenly applied harmonic mechanical load. The dynamic electroelastic state of the layer is analyzed


electroelastic vibration piezoceramic layer mechanical loading method of characteristics (d’Alembert formula) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. E. Babaev, Nonstationary Waves in Continua with a Set of Reflecting Surfaces [in Russian], Naukova Dumka, Kyiv (1990).Google Scholar
  2. 2.
    V. M. Bazhenov and A. F. Ulitko, “Investigation of the dynamic behavior of a piezoelectric ceramic layer during instantaneous electric loading,” Int. Appl. Mech., 11, No. 1, 16–20 (1975).Google Scholar
  3. 3.
    L. O. Grigor’eva and V. M. Shul’ga, “Numerical analysis of the deformation of a piezoceramic cylinder under axisymmetric dynamic loading,” Teor. Prikl. Mekh., 42, 171–176 (2006).Google Scholar
  4. 4.
    O. Yu. Zharii and A. F. Ulitko, An Introduction to the Mechanics of Nonstationary Vibration and Waves [in Russian], Vyshcha Shkoka, Kyiv (1989).Google Scholar
  5. 5.
    Yu. N. Kuliev and Kh. A. Rakhmatulin, “Longitudinal impact on a piezoceramic rod,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 5, 117–122 (1972).Google Scholar
  6. 6.
    V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity, Vol. 5 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kiev (1989).Google Scholar
  7. 7.
    G. M. Polozhii, Equations of Mathematical Physics [in Ukrainian], Radyans’ka Shkola, Kyiv (1959).Google Scholar
  8. 8.
    N. A. Shul’ga and A. M. Bolkisev, Vibration of Piezoelectric Bodies [in Russian], Naukova Dumka, Kyiv (1990).Google Scholar
  9. 9.
    M. O. Shul’ga and V. L. Karlash, Resonant Electroelastic Vibration of Piezoelectric Plates [in Ukrainian], Naukova Dumka, Kyiv (2008).Google Scholar
  10. 10.
    L. O. Grigor’eva, “Numerical solution to the initial–boundary-value problem of electroelasticity for a radially polarized hollow piezoceramic cylinder,” Int. Appl. Mech., 42, No. 12, 1371–1379 (2006).CrossRefGoogle Scholar
  11. 11.
    L. O. Grigor’eva, “Vibrations of a piezoceramic cylinder subject to nonstationary electric excitation,” Int. Appl. Mech., 43, No. 3, 303–308 (2007).CrossRefGoogle Scholar
  12. 12.
    V. L. Karlash, “Planar electroelastic vibrations of piezoceramic rectangular plate and half-disk,” Int. Appl. Mech., 43, No. 5, 547–553 (2007).CrossRefGoogle Scholar
  13. 13.
    V. L. Karlash, “Evolution of the planar vibrations of a rectangular piezoceramic plate as its aspect ratio is changed,” Int. Appl. Mech., 43, No. 7, 786–793 (2007).CrossRefGoogle Scholar
  14. 14.
    N. A. Shul’ga and L. O. Grigor’eva, “Method of characteristics in analysis of the propagation of electroelastic thickness oscillations in a piezoceramic layer under electric excitation,” Int. Appl. Mech., 44, No. 1, 1093–1097 (2008).CrossRefGoogle Scholar
  15. 15.
    N. A. Shul’ga and L. O. Grigo’eva, “Propagation of two-dimensional nonstationary vibrations in an electrically excited piezoceramic prismatic body,” Int. Appl. Mech., 44, No. 11, 1258–1264 (2008).CrossRefGoogle Scholar
  16. 16.
    N. A. Shul’ga and L. O. Grigor’eva, “Solution of initial–boundary-value problems of electroelasticity revisited,” Int. Appl. Mech., 44, No. 12, 1371–1377 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations