Advertisement

International Applied Mechanics

, Volume 44, Issue 9, pp 1015–1024 | Cite as

Nonaxisymmetric vibrations of ellipsoidal shells under nonstationary distributed loads

  • V. F. Meish
  • N. V. Maiborodina
Article

Problems of forced nonaxisymmetric vibrations of ellipsoidal shells under nonstationary loads are formulated. A numerical algorithm to solve them is developed. The solutions obtained are analyzed

Keywords

ellipsoidal shell nonstationary load forced nonaxisymmetric vibrations numerical algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Vol'mir, Nonlinear Dynamics of Plates and Shells [in Russian], Nauka, Moscow (1972), p. 432.Google Scholar
  2. 2.
    Ya. M. Grigorenko, E. I. Bespalova, A. B. Kitaigorodskii, and A. I. Shinkar', Free Vibrations of Elements of Shell Structures [in Russian], Naukova Dumka, Kyiv (1986), p. 172.Google Scholar
  3. 3.
    A. N. Guz' and V. D. Kubenko, Theory of Nonstationary Aerohydroelasticity of Shells, Vol. 5 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kyiv (1982), p. 400.Google Scholar
  4. 4.
    A. N. Guz', V. D. Kubenko, and A. É. Babaev, Hydroelasticity of Shell Systems [in Russian], Vyshcha Shkola, Kyiv (1984), p. 208.Google Scholar
  5. 5.
    V. I. Gulyaev, V. A. Bazhenov, and E. A. Gotsulyak, Stability of Nonlinear Mechanical Systems [in Russian], Vyshcha Shkola, Lviv (1982), p. 255.Google Scholar
  6. 6.
    E. G. Yanyutin, I. V. Yanchevskii, A. V. Voropai, and A. S. Sharapata, Problems of Impulsive Deformation of Structural Elements [in Russian], KhNADU, Kharkov (2004), p. 392.Google Scholar
  7. 7.
    P. Z. Lugovoi, V. P. Mukoid, and V. F. Meish, Dynamics of Shell Structures under Explosive Loads [in Russian], Naukova Dumka, Kyiv (1991), p. 280.Google Scholar
  8. 8.
    P. Z. Lugovoi, V. F. Meish, and É. A. Shtantsel', Nonstationary Dynamics of Inhomogeneous Shell Structures [in Russian], Izd. Poligraf. Tsentr Kiev. Univer., Kyiv (2005), p. 563.Google Scholar
  9. 9.
    V. V. Novozhilov, Fundamentals of Nonlinear Elasticity Theory [in Russian], Gostekhizdat, Leningrad-Moscow (1948), p. 212.Google Scholar
  10. 10.
    A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1977), p. 656.Google Scholar
  11. 11.
    Ya. M. Grigorenko, “Nonconventional approaches to static problems for noncircular cylindrical shells in different formulations,” Int. Appl. Mech., 43, No. 1, 35–53 (2007).CrossRefMathSciNetGoogle Scholar
  12. 12.
    Ya. M. Grigorenko and L. V. Kharitonova, “Deformation of flexible noncircular cylindrical shells under concurrent loads of two types,” Int. Appl. Mech., 43, No. 7, 754–760 (2007).CrossRefGoogle Scholar
  13. 13.
    E. A. Kurilov and Yu. V. Mikhlin, “Nonlinear vibrations of cylindrical shells with initial imperfections in a supersonic flow,” Int. Appl. Mech., 43, No. 9, 1000–1008 (2007).CrossRefGoogle Scholar
  14. 14.
    K. G. Golovko, P. Z. Lugovoi, and V. F. Meish, “Solution of axisymmetric dynamic problems for cylindrical shells on an elastic foundation,” Int. Appl. Mech., 43, No. 12, 1390–1395 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. F. Meish
    • 1
    • 2
  • N. V. Maiborodina
    • 1
    • 2
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.National Agrarian UniversityKievUkraine

Personalised recommendations