Using a split Hopkinson bar to specify the parameters of thermomechanical models of flow under high strain rate deformation

  • I. K. Senchenkov
  • N. F. Andrushko


By way of numerical simulation, a method is developed to determine the parameters of the thermomechanical Bodner-Partom model of flow under high strain rate deformation using a split Hopkinson bar. The classical method is generalized in two directions. To evaluate the kinematic hardening parameters, the wave reflected from the free end of the bar is used. The thermomechanical parameters that are responsible for the stored energy of cold work are calculated from measurements of temperature changes in the specimen


split Hopkinson bar Bodner-Partom model Baushinger effect temperature change finite-element method stored energy of cold work 


  1. 1.
    N. F. Andrushko, “Three-dimensional simulation of inelastic waves in a split Hopkinson bar,” Visn. Kyiv. Univ., Ser. Fiz.-Mat. Nauky, 1, 73–82 (2005).Google Scholar
  2. 2.
    N. I. Bezukhov, V. L. Bazhanov, I. I. Gol’denblat, et al., Analysis of Strength, Stability, and Vibrations at High Temperatures [in Russian], Mashinostroenie, Moscow (1965).Google Scholar
  3. 3.
    A. P. Bol’shakov, S. A. Novikov, and V. A. Sinitsyn, “Dynamic uniaxial tension and compression curves of copper and alloy AMg6,” Strength of Materials, 11, No. 10, 1159–1161 (1979).CrossRefGoogle Scholar
  4. 4.
    Ya. A. Zhuk, I. K. Senchenkov, V. I. Kozlov, and G. A. Tabieva, “Axisymmetric dynamic problem of coupled thermoviscoplasticity,” Int. Appl. Mech., 37, No. 10, 1311–1317 (2001).CrossRefGoogle Scholar
  5. 5.
    I. A. Motovilovets and V. I. Kozlov, Thermoelasticity, Vol. 1 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kyiv (1987).Google Scholar
  6. 6.
    I. K. Senchenkov and Ya. A. Zhuk, “Thermodynamic analysis of one thermoviscoplastic model,” Prikl. Mekh., 33, No. 2, 41–48 (1997).Google Scholar
  7. 7.
    I. K. Senchenkov and G. A. Tabieva, “Determination of the parameters of the Bodner-Partom model for thermoviscoplastic deformation of materials,” Int. Appl. Mech., 32, No. 2, 132–139 (1996).MATHCrossRefGoogle Scholar
  8. 8.
    G. B. Talypov, Plasticity and Strength of Steel under Complex Loading [in Russian], Izd. Leningr. Univ., Leningrad (1968).Google Scholar
  9. 9.
    S. R. Bodner, Unified Plasticity, Technion, Haifa (2000).Google Scholar
  10. 10.
    S. R. Bodner and A. Lindenfeld, “Constitutive modelling of the stored energy of cold work under cyclic loading,” Eur. J. Mech., A/Solids, 14, No. 3, 333–348 (1995).MATHGoogle Scholar
  11. 11.
    S. R. Bodner and M. B. Rubin, “Modelling of very high strain rates,” J. Appl. Phis., 76, 2742–2747 (1994).CrossRefADSGoogle Scholar
  12. 12.
    O. P. Chervinko, I. K. Senchenkov, and N. N. Yakimenko, “Vibrations and self-heating of a viscoelastic prism with a cylindrical inclusion,” Int. Appl. Mech., 43, No. 6, 647–653 (2007).CrossRefGoogle Scholar
  13. 13.
    E. V. Dolya, O. P. Chervinko, and I. K. Senchenkov, “Vibrations and self-heating of a layered elastic-viscoelastic rectangular prism under a vibrating punch,” Int. Appl. Mech., 43, No. 8, 886–892 (2007).CrossRefGoogle Scholar
  14. 14.
    A. Chrysochoos, “The heat evolved during an elastic-plastic transformation at finite strain,” in: Thermomechanical Couplings in Solids, North-Holland, Amsterdam-New York-Oxford-Tokyo (1987), pp. 79–84.Google Scholar
  15. 15.
    B. A. Gama, S. L. Lopatnikov, and J. W. Gillespie, Jr., “Hopkinson bar experimental technique: A critical review,” Appl. Mech. Rev., 57, No. 4, 223–249 (2004).CrossRefGoogle Scholar
  16. 16.
    A. E. Green and P. M. Naghdi, “The second law of thermodynamics and cyclic processes,” Trans. ASME, J. Appl. Mech., 45, 487–492 (1978).ADSGoogle Scholar
  17. 17.
    R. H. Guirguis, “Ignition due to macroscopic shear,” in: Proc. Conf. on Shock Compression of Condensed Matter (Utah, June 27–July 2), Pt. 2, American Institute of Physics, Melville, NY (1999), pp. 647–650.Google Scholar
  18. 18.
    D. P. Harvey and R. J. Bonenberger, Jr., “Detection of fatigue macrocracks in 1100 aluminium from thermomechanical data,” Eng. Fract. Mech., 65, 609–620 (2000).CrossRefGoogle Scholar
  19. 19.
    K. G. Holland, L. C. Chhabildas, W. D. Reinhart, and M. D. Furnish, “Experiments of Cercom SiC rods under impact,” in: Proc. Conf. on Shock Compression of Condensed Matter (Utah, June 27–July 2), Pt. 1, American Institute of Physics, Melville, NY (1999), pp. 585–588.Google Scholar
  20. 20.
    H. J. John, Jr., and M. F. Alamo, “High-strain rate testing of HMX-based explosive,” in: Proc. Conf. on Shock Compression of Condensed Matter (Utah, June 27–July 2), Pt. 2, American Institute of Physics, Melville, NY (1999), pp. 679–682.Google Scholar
  21. 21.
    R. Kapoor and S. Nemat-Nasser, “Determination of temperature rise during high strain rate deformation,” Mech. Mater., 27, No. 1, 1–12 (1998).CrossRefGoogle Scholar
  22. 22.
    V. G. Karnaukhov and Yu. V. Revenko, “Dissipative heating of a viscoelastic cylinder steadily rolling over a rigid foundation,” Int. Appl. Mech., 42, No. 1, 51–60 (2006).CrossRefGoogle Scholar
  23. 23.
    G. Kim and S. Im, “Approximate analysis of a shear band in thermoviscoplastic material,” Trans. ASME, J. Appl. Mech., 66, No. 3, 677–694 (1999).MathSciNetGoogle Scholar
  24. 24.
    U. S. Lindholm, “Some experiment with the split Hopkinson pressure bar,” J. Mech. Phys. Solids, 12, No. 5, 317–335 (1964).CrossRefADSGoogle Scholar
  25. 25.
    H. Loushe and A. Chrysochoos, “Thermal and dissipative effects accompanying Lüders band propagation,” Mater. Sci. Eng., 307, 15–22 (2001).CrossRefGoogle Scholar
  26. 26.
    M. P. Luong, “Fatigue limit evaluation of metals using an infrared thermographic technique,” Mech. Mater., 28, 155–163 (1998).CrossRefGoogle Scholar
  27. 27.
    I. K. Senchenkov and N. F. Andrushko, “Thermomechanical coupling effects in a materially nonlinear disk under impulsive radial loading,” Int. Appl. Mech., 42, No. 8, 951–958 (2006).CrossRefGoogle Scholar
  28. 28.
    T. G. Shawki, “The phenomenon of shear strain localisation in dynamic viscoplasticity,” Appl. Mech. Rev., 45, No. 3, Pt. 2, 46–61 (1992).MathSciNetCrossRefGoogle Scholar
  29. 29.
    I. M. Smith and D. V. Griffiths, Programming the Finite Element Method, John Wiley & Sons, Chichester-New York (1997).MATHGoogle Scholar
  30. 30.
    W. Thompson, “On the thermoelastic, thermomagnetic and pyroelectric properties of material,” Phil. Mag., 5, 4–27 (1978).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • I. K. Senchenkov
    • 1
  • N. F. Andrushko
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations