Advertisement

International Applied Mechanics

, Volume 43, Issue 12, pp 1406–1410 | Cite as

Numerical-analytical solution of plane problems in thermoelasticity

  • Yu. K. Rubtsov
  • E. N. Borisov
Article
  • 51 Downloads

Abstract

The scaled-boundary method is used as a numerical-analytical method to solve problems of thermoelasticity. As an example, the stress intensity factor for a heated thin circular orthotropic disk with an internal crack is evaluated

Keywords

scaled-boundary method discretization thermoelasticity stress intensity factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. C. Zienkiewicz and K. Morgan, Finite Elements and Approximation, John Wiley & Sons, New York (1983).MATHGoogle Scholar
  2. 2.
    V. G. Karnaukhov and I. F. Kirichok, Electrothermoviscoelasticity, Vol. 4 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kyiv (1988).Google Scholar
  3. 3.
    I. A. Motovilovets and V. I. Kozlov, Thermoelasticity, Vol. 1 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kyiv (1987).Google Scholar
  4. 4.
    W. Nowacki, Dynamic Problems of Thermoelasticity, Noordhoff, Leyden (1975).Google Scholar
  5. 5.
    Yu. N. Podil’chuk, “Exact analytical solutions of static electroelastic and thermoelectroelastic problems for a transversely isotropic body in curvilinear coordinate systems,” Int. Appl. Mech., No. 2, 39, 132–170 (2003).Google Scholar
  6. 6.
    Yu. N. Podil’chuk and Yu. K. Rubtsov, “Development of the boundary-element method for three-dimensional problems of static and nonstationary elasticity,” Int. Appl. Mech., 40, No. 2, 160–168 (2004).CrossRefGoogle Scholar
  7. 7.
    S. Yu. Fialko, “Natural vibrations of complex bodies,” Int. Appl. Mech., 40, No. 1, 83–90 (2004).CrossRefGoogle Scholar
  8. 8.
    N. G. Khomasuridse, “A class of three-dimensional boundary-value problems of thermoelasticity,” Int. Appl. Mech., 41, No. 9, 1076–1083 (2005).CrossRefGoogle Scholar
  9. 9.
    B. E. Pobedrya, “On dissipation in linear thermoviscoelasticity,” Int. Appl. Mech., 41, No. 9, 1031–1036 (2005).CrossRefGoogle Scholar
  10. 10.
    Yu. K. Rubtsov, “Scaled-boundary method in electroelasticity of thin plates,” Int. Appl. Mech., 42, No. 7, 832–841 (2006).CrossRefGoogle Scholar
  11. 11.
    Yu. K. Rubtsov and E. N. Borisov, “Analysis of the nonstationary spatial propagation of elastic waves from cavities subject to mechanical and thermal loads,” Int. Appl. Mech., 42, No. 8, 913–921 (2006).CrossRefGoogle Scholar
  12. 12.
    I. K. Senchenkov, “Thermomechanical model of growing cylindrical bodies made of physically nonlinear materials,” Int. Appl. Mech., 41, No. 9, 1059–1065 (2005).CrossRefGoogle Scholar
  13. 13.
    J. N. Sharma, P. K. Sharma, and S. K. Gupta, “On the wave propagation in generalized thermoelastic media,” Int. J. Appl. Mech. Eng., 8, No. 2, 299–316 (2003).MATHGoogle Scholar
  14. 14.
    Ch. Song and J. P. Wolf, “The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics,” Comp. Meth. Appl. Mech. Eng., 147, 329–355 (1997).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ch. Song and J. P. Wolf, “The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for diffusion,” Int. J. Numer. Meth. Eng., 45, 1403–1431 (1999).MATHCrossRefGoogle Scholar
  16. 16.
    Ch. Song and J. P. Wolf, “The scaled boundary finite-element method: analytical solution in frequency domain,” Comp. Meth. Appl. Mech. Eng., 164, 249–264 (1998).MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ch. Song and J. P. Wolf, “Body loads in the scaled boundary finite-element method,” Comp. Meth. Appl. Mech. Eng., 180, 117–135 (1999).MATHCrossRefGoogle Scholar
  18. 18.
    J. P. Wolf and Ch. Song, “The scaled boundary finite-element method—a semi-analytical fundamental-solution-less boundary element method,” Comp. Meth. Appl. Mech. Eng., 190, 5551–5568 (2001).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Yu. K. Rubtsov
    • 1
  • E. N. Borisov
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations