International Applied Mechanics

, Volume 43, Issue 10, pp 1132–1141 | Cite as

Stress-strain state of shallow shells with rectangular planform and varying thickness: Refined formulation

  • A. Ya. Grigorenko
  • N. P. Yaremchenko


The stress-strain state of a shallow shell with rectangular planform and varying thickness is analyzed in a refined formulation for different boundary conditions. A numerical-and-analytic method is developed based on the spline-approximation and discrete-orthogonalization methods. The stress-strain state of shallow shells with thickness varied without change in weight is analyzed


shallow shell nonclassical model spline-approximation variable thickness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Z. Vlasov, General Theory of Shells [in Russian], Gl. Izd. Tekhn.-Teor. Lit., Moscow-Leningrad (1949).Google Scholar
  2. 2.
    Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells of Variable Stiffness [in Russian], Naukova Dumka, Kyiv (1981).Google Scholar
  3. 3.
    Ya. M. Grigorenko, Yu. N. Shevchenko, A. T. Vasilenko, et al., Numerical Methods [in Russian], A.S.K., Kyiv (2002).Google Scholar
  4. 4.
    A. A. Nazarov, Fundamentals of the Theory and Methods of Design of Shallow Shells [in Russian], Stroiizdat, Leningrad (1966).Google Scholar
  5. 5.
    B. L. Pelekh, Theory of Shells with Finite Shear Stiffness [in Russian], Naukova Dumka, Kyiv (1973).Google Scholar
  6. 6.
    P. M. Varvak and A. F. Ryabov (eds.), A Handbook of the Theory of Elasticity [in Russian], Budivel’nyk, Kyiv (1971).Google Scholar
  7. 7.
    C. R. Calladine, Theory of Shell Structures, Cambridge Univ. Press, Cambridge (1983).MATHGoogle Scholar
  8. 8.
    Y. K. Cheung, Finite Strip Method in Structure Analysis, Pergamon Press, Oxford (1976).Google Scholar
  9. 9.
    G. R. Cowper, G. M. Lindberg, and M. D. Olson, “Shallow shell finite element of triangular shape,” Int. J. Solids Struct., No. 6, 1133–1156 (1970).Google Scholar
  10. 10.
    S. C. Fan and Y. K. Cheung, “Analysis of shallow shells by spline finite strip method,” Eng. Struct., No. 5, 255–263 (1983).Google Scholar
  11. 11.
    W. Flügge, Stresses in Shells, Springer-Verlag, Berlin (1973).MATHGoogle Scholar
  12. 12.
    P. L. Gould, Analysis of Shells and Plates, Springer-Verlag, New York (1988).MATHGoogle Scholar
  13. 13.
    A. Ya. Grigorenko and T. L. Efimova, “Application of spline-approximation for solving the problems on natural vibrations of rectangular plates of variable thickness,” Int. Appl. Mech., 41, No. 10, 1161–1169 (2005).CrossRefGoogle Scholar
  14. 14.
    Ya. M. Grigorenko, A. Ya. Grigorenko, and L. I. Zakhariichenko, “Calculation of stress-strain state of orthotropic closed and open non-circular cylindrical shells,” Int. Appl. Mech., 41, No. 7, 778–785 (2005).CrossRefGoogle Scholar
  15. 15.
    Ya. M. Grigorenko, N. N. Kryukov, and N. S. Yakovenko, “Solving the boundary problems of the theory of layered orthotropic trapezoidal plates of variable thickness on the base of spline-approximation,” Int. Appl. Mech., 41, No. 4, 413–420 (2005).CrossRefGoogle Scholar
  16. 16.
    Ya. M. Grigorenko and S. N. Yaremchenko, “Refined design of corrugated noncircular cylindrical shells,” Int. Appl. Mech., 41, No. 1, 7–13 (2005).CrossRefGoogle Scholar
  17. 17.
    Ya. M. Grigorenko and L. I. Zakhariichenko, “Study into the effect of circumferential variation in thickness and load on the deformation,” Int. Appl. Mech., 38, No. 10, 1229–1236 (2002).CrossRefGoogle Scholar
  18. 18.
    E. Reissner, “Effect of transverse shear deformation on the bending of elastic plates,” Trans. ASME, J. Appl. Mech., No. 12, 69–77 (1945).Google Scholar
  19. 19.
    Z. Rychter, “Family of shear deformation theories for shallow shells,” Adv. Mech., No. 98, 221–232 (1993).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. Ya. Grigorenko
    • 1
  • N. P. Yaremchenko
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyiv

Personalised recommendations