Advertisement

International Applied Mechanics

, Volume 43, Issue 9, pp 1017–1023 | Cite as

Effect of the length of a rotating drillstring on the stability of its quasistatic equilibrium

  • V. I. Gulyaev
  • P. Z. Lugovoi
  • V. V. Gaidaichuk
  • I. L. Solov’ev
  • I. V. Gorbunovich
Article

Abstract

A mathematical model is proposed to describe the critical quasistatic equilibrium of long rotating drillstrings. The prestress of drillstrings by the gravity and torsion forces, the gyroscopic interaction of rotary and linear motions, and the destabilizing effect of the internal flow of the drilling fluid are taken into account. The phenomena accompanying the drilling to different depths are studied numerically

Keywords

drillstring deep-hole drilling quasistatic equilibrium critical states 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Belyaev, A. G. Kalinin, K. M. Solodkii, and A. F. Fedorov, Design of Bottom-Hole Assembly [in Russian], Nedra, Moscow (1977).Google Scholar
  2. 2.
    I. V. Voevidko, “A method to design unstabilized bottom-hole assembly for rotary well drilling,” Naft. Gazova Promysl., No. 2, 19–21 (2004).Google Scholar
  3. 3.
    V. I. Gulyaev, “Complex motion of elastic systems,” Int. Appl. Mech., 39, No. 5, 525–545 (2003).CrossRefGoogle Scholar
  4. 4.
    V. I. Gulyaev, V. V. Gaidaichuk, and V. L. Koshkin, Elastic Deformation, Stability, and Vibrations of Flexible Curvilinear Rods [in Russian], Naukova Dumka, Kyiv (1992).Google Scholar
  5. 5.
    M. V. Ligots’kyi, “On cantilever beam conditions in design of bottom-hole assembly and other problems,” Naft. Gazova Promysl., No. 1, 31–33 (2004).Google Scholar
  6. 6.
    M. A. Myslyuk, I. Y. Rybchych, and R. S. Yaremchuk, Well Drilling, Vol. 3. Vertical and Controlled Drilling [in Ukrainian], Interpres LTD. Kyiv (2004).Google Scholar
  7. 7.
    Ya. G. Panovko, Solid Mechanics [in Russian], Nauka, Moscow (1985).Google Scholar
  8. 8.
    R. I. Stefurak, V. D. Novikov, M. A. Myslyuk, V. Yu. Bliznyukov, and A. S. Ovsyannikov, Choosing Multisupport Bottom-Hole Assemblies for Rotary Well Drilling [in Russian], VNIIOÉNG, Moscow (2000).Google Scholar
  9. 9.
    V. I. Feodos’ev, Selected Problems and Issues on Resistance of Materials [in Russian], Nauka, Moscow (1967).Google Scholar
  10. 10.
    A. P. Fillipov, Vibrations of Deformable Systems [in Russian], Naukova Dumka, Kyiv (1970).Google Scholar
  11. 11.
    H. Ziegler, Principles of Structural Stability, Blaisdell Publ. Comp., Waltham, MA (1968).Google Scholar
  12. 12.
    K. V. Avramov, “Nonlinear forced vibrations of a cylindrical shell with two internal resonances,” Int. Appl. Mech., 42, No. 2, 169–175 (2006).CrossRefGoogle Scholar
  13. 13.
    V. I. Gulyayev and E. Yu. Tolbatov, “Forced and self-excited vibrations of pipes containing mobile boiling fluid clots,” J. Sound Vibr., 257(3), 425–437 (2002).CrossRefADSGoogle Scholar
  14. 14.
    V. I. Gulyayev and E. Yu. Tolbatov, “Dynamics of spiral tubes containing internal moving masses of boiling liquid,” J. Sound Vibr., 274, 233–248 (2004).CrossRefADSGoogle Scholar
  15. 15.
    V. I. Gulyaev, P. Z. Lugovoi, M. A. Belova, and I. L. Solov’ev, “Stability of the equilibrium of rotating drillstrings,” Int. Appl. Mech., 42, No. 6, 692–698 (2006).CrossRefGoogle Scholar
  16. 16.
    N. I. Klimenko, “Numerical-analytic solution of boundary-value stress-strain problems for rotating anisotropic cylinders,” Int. Appl. Mech., 41, No. 8, 904–909 (2005).CrossRefGoogle Scholar
  17. 17.
    Yu. K. Rudavskii and I. A. Vicovich, “Oscillation of an elastic bar rigidly linked to a kinematically excited pendulum,” Int. Appl. Mech., 42, No. 10, 1170–1178 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. I. Gulyaev
    • 1
  • P. Z. Lugovoi
    • 1
  • V. V. Gaidaichuk
    • 2
  • I. L. Solov’ev
    • 1
  • I. V. Gorbunovich
    • 3
  1. 1.National University of TransportKyivUkraine
  2. 2.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyiv
  3. 3.National University of Construction and ArchitectureKyivUkraine

Personalised recommendations