Advertisement

International Applied Mechanics

, Volume 43, Issue 4, pp 467–474 | Cite as

MACCEPA, The mechanically adjustable compliance and controllable equilibrium position actuator: A 3DOF joint with two independent compliances

  • R. Van Ham
  • M. Van Damme
  • B. Verrelst
  • B. Vanderborght
  • D. Lefeber
Article

Abstract

The MACCEPA is a straightforward and easy to construct rotational actuator in which the compliance can be controlled separately from the equilibrium position. A 3DOF joint with adaptable compliance is presented. The generated torque is a linear function of the compliance and of the angle between the equilibrium position and actual position. This makes this actuator perfectly suitable for dynamic walking, human-robotic interfaces, and robotic rehabilitation devices

Keywords

adjustable compliance equilibrium position actuators compliance control spring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. A. McMahon and G. C. Cheng, “The mechanics of running: How does stiffness couple with speed?” J. Biomech., 23, 65–78 (1990).CrossRefGoogle Scholar
  2. 2.
    T. A. McMahon, “The role of compliance in mammalian running gaits,” J. Experim. Biol., 115, 263–282 (1985).Google Scholar
  3. 3.
    G. A. Pratt and M. M. Williamson, “Series elastic actuators,” in: Proc. IEEE-IROS Conf., Pittsburg, USA (1995), pp. 399–406.Google Scholar
  4. 4.
    V. B. Larin and V. M. Matiyasevich, “A note on a model hopping machine,” Int. Appl. Mech., 38, No. 10, 1272–1279 (2002).CrossRefGoogle Scholar
  5. 5.
    V. B. Larin, “A note on a walking machine model,” Int. Appl. Mech., 39, No. 4, 484–492 (2003).CrossRefGoogle Scholar
  6. 6.
    V. B. Larin and V. M. Maliyasevich, “A control algorithm for a 3D hopping machine,” Int. Appl. Mech., 40, No. 4, 462–470 (2004).CrossRefGoogle Scholar
  7. 7.
    M. Wisse, Essentials of Dynamic Walking: Analysis and Design of Two-Legged Robots, PhD Thesis, Technische Universiteit Delft (2004).Google Scholar
  8. 8.
    J. Yamgushi, D. Nishino, and A. Takanishi, “Realization of dynamic biped walking varying joint stiffness using antagonistic driven joints,” in: Proc. IEEE Int. Conf. on Robotics and Automatisation, Leuven, Belgium (1998), pp. 2022–2029.Google Scholar
  9. 9.
    J. W. Hurst, J. E. Chestnutt, and A. Rizzi, “An actuator with physically variable stiffness for highly dynamic legged locomotion,” in: Proc. IEEE Int. Conf. on Robotics and Automation, New Orleans, USA (2004), pp. 4662–4667.Google Scholar
  10. 10.
    F. Daerden and D. Lefeber, “The concept and design of pleated pneumatic artificial muscles,” Int. J. Fluid Power, 2, No. 3, 41–50 (2001).Google Scholar
  11. 11.
  12. 12.
    G. Tonietti, R. Schiavi, and A. Bicchi, “Design and control of a variable stiffness actuator,” in: Proc. IEEE ICRA Int. Conf. on Robotics and Automation, Barcelona, Spain, April (2005).Google Scholar
  13. 13.
    Sh. A. Migliore, E. A. Brown, and P. S. DeWeerth, “Biologically Inspired Joint Stiffness Control,” in: Proc. IEEE ICRA Int. Conf. on Robotics and Automation, Barcelona, Spain, April (2005).Google Scholar
  14. 14.
    J. S. Sulzer, M. A. Peshkin, and J. L. Patton “MARIONET: An exotendon-driven rotary series elastic actuator for exerting joint torque,” in: Proc. 9th IEEE Int. Conf. on Rehabilitation Robotics, June 28–July 1, Chicago, IL, USA (2005).Google Scholar
  15. 15.
    M. Van Damme, F. Daerden, and D. Lefeber, “A pneumatic manipulator used in direct contact with an operator,” in: Proc. IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, April (2005), pp. 4505–4510.Google Scholar
  16. 16.
  17. 17.
  18. 18.
  19. 19.
  20. 20.

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • R. Van Ham
    • 1
  • M. Van Damme
    • 1
  • B. Verrelst
    • 1
  • B. Vanderborght
    • 1
  • D. Lefeber
    • 1
  1. 1.Vrije Universiteit BrusselBelgium

Personalised recommendations