Advertisement

International Applied Mechanics

, Volume 43, Issue 3, pp 344–350 | Cite as

Evolution of the equilibrium states of an inverted pendulum

  • L. G. Lobas
  • V. V. Koval’chuk
  • O. V. Bambura
Article

Abstract

The influence of the pendulum parameters and the follower force on the evolution of equilibrium states is analyzed using a generalized mathematical model of inverted pendulum. Equilibrium curves are plotted using the parameter continuation method. It is shown that the pendulum with certain values of the angular eccentricity has one or three nonvertical equilibrium positions

Keywords

mathematical pendulum asymmetric follower force equilibrium positions angular and linear eccentricities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Dzhupanov and Sv. V. Lilkova-Markova, “Dynamic stability of a fluid-conveying cantilevered pipe on an additional combined support,” Int. Appl. Mech., 39, No. 2, 185–191 (2003).CrossRefGoogle Scholar
  2. 2.
    L. G. Lobas and L. L. Lobas, “Influence of the orientation of the follower force on the stability domains of the upper equilibrium position of an inverted double pendulum,” Probl. Upravl. Inform., No. 6, 26–33 (2002).Google Scholar
  3. 3.
    I. G. Boruk and V. L. Lobas, “Evolution of limit cycles in the stability domain of a double pendulum under a variable follower force,” Int. Appl. Mech., 40, No. 3, 337–344 (2004).CrossRefGoogle Scholar
  4. 4.
    V. A. Dzhupanov and Sv. V. Lilkova-Markova, “Divergent instability domains of a fluid-conveying cantilevered pipe with a combined support,” Int. Appl. Mech., 40, No. 3, 319–321 (2004).CrossRefGoogle Scholar
  5. 5.
    V. V. Koval’chuk and V. L. Lobas, “Divergent bifurcations of a double pendulum under the action of an asymmetric follower force,” Int. Appl. Mech., 40, No. 7, 821–828 (2004).CrossRefGoogle Scholar
  6. 6.
    L. G. Lobas, “Generalized mathematical model of an inverted multilink pendulum with follower force,” Int. Appl. Mech., 41, No. 5, 566–572 (2005).CrossRefGoogle Scholar
  7. 7.
    L. G. Lobas, “Dynamic behavior of multilink pendulums under follower forces,” Int. Appl. Mech., 41, No. 6, 587–613 (2005).CrossRefGoogle Scholar
  8. 8.
    L. G. Lobas and V. V. Koval’chuk, “Influence of the nonlinearity of the elastic elements on the stability of a double pendulum with follower force,” Int. Appl. Mech., 41, No. 4, 455–461 (2005).CrossRefGoogle Scholar
  9. 9.
    V. L. Lobas, “Influence of nonlinear characteristics of elastic elements on the bifurcations of equilibrium states of double pendulum with follower force,” Int. Appl. Mech., 41, No. 2, 197–202 (2005).CrossRefGoogle Scholar
  10. 10.
    J. W. Miles, “The pendulum from Hugens’ horologium to symmetry breaking and chaos,” in: Proc. 17th Int. Congr. on Theoretical and Applied Mechanics (Grenoble, August 21–27, 1988), Amsterdam (1989), pp. 193–215.Google Scholar
  11. 11.
    S. Otterbein, “Stabilisierung des n-Pendels und der Indische Seiltrick,” Arch. Rat. Mech. Anal., 78, No. 4, 381–393 (1982).MATHCrossRefGoogle Scholar
  12. 12.
    Y. A. Shinohara, “A geometric method for numerical solution of non-linear equations and its application to non-linear oscillations,” Publ. RJMS, Kyoto Univ., 8, No. 1, 13–42 (1972).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • L. G. Lobas
    • 1
  • V. V. Koval’chuk
    • 1
  • O. V. Bambura
    • 1
  1. 1.Kyiv University of Economics and Transport TechnologyKyivUkraine

Personalised recommendations