International Applied Mechanics

, Volume 42, Issue 6, pp 692–698 | Cite as

Stability of the equilibrium of rotating drillstrings

  • V. I. Gulyaev
  • P. Z. Lugovoi
  • M. A. Belova
  • I. L. Solov’ev


The quasistatic stability of a rotating drillstring under longitudinal force and torque is analyzed. Constitutive equations are derived, and a technique to solve them is proposed. It is shown that the buckling mode of the drillstring is helical within a section subjected to compressive forces


drillstring rotation longitudinal force torque constitutive equations helical shape compressed section of drillstring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Gulyaev, V. A. Bazhenov, E. A. Gotsulyak, et al., Stability of Periodic Processes in Nonlinear Mechanical Systems [in Russian], Vyshcha Shkola, Lvov (1983).Google Scholar
  2. 2.
    A. Yu. Ishlinskii, Mechanics: Ideas, Problems, and Applications [in Russian], Nauka, Moscow (1985).Google Scholar
  3. 3.
    A. Yu. Ishlinskii, V. A. Storozhenko, and M. É. Temchenko, “Motion of an axisymmetric rigid body suspended from a string,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 6, 3–16 (1979).Google Scholar
  4. 4.
    Ya. G. Panovko and I. I. Gubanova, Stability and Vibrations of Elastic Systems [in Russian], Nauka, Moscow (1979).Google Scholar
  5. 5.
    A. E. Saroyan, Drillstring Operation: Theory and Practice [in Russian], Nauka, Moscow (1990).Google Scholar
  6. 6.
    V. A. Svetlitskii, Beam Mechanics, Part 2, Dynamics [in Russian], Vysshaya Shkola, Moscow (1987).Google Scholar
  7. 7.
    V. I. Feodos’ev, Selected Problems and Issues on Strength of Materials [in Russian], Nauka, Moscow (1967).Google Scholar
  8. 8.
    E. V. Kharchenko, Dynamic Processes in Drilling Rigs [in Russian], Svitoch, Lvov (1991).Google Scholar
  9. 9.
    H. Ziegler, Principles of Structural Stability, Blaisdell Publ. Comp., Waltham, MA (1968).MATHGoogle Scholar
  10. 10.
    V. G. Yurtaev, Dynamics of Drilling Rigs [in Russian], Nauka, Moscow (1987).Google Scholar
  11. 11.
    Ya. M. Grigorenko and L. V. Kharitonova, “A note on the determination of critical loads for flexible noncircular cylindrical shells with clamped edges,” Int. Appl. Mech., 41, No. 11, 1272–1279 (2005).CrossRefGoogle Scholar
  12. 12.
    V. I. Gulyaev, I. L. Solov’ev, and M. A. Belova, “Bifurcation of a single-support elastic thin-walled rotor,” Int. Appl. Mech., 41, No. 3, 330–335 (2005).MATHCrossRefGoogle Scholar
  13. 13.
    V. I. Gulyaev and S. N. Khudolii, “Vibrations of curved and twisted blades during complex rotation,” Int. Appl. Mech., 41, No. 4, 449–454 (2005).MATHCrossRefGoogle Scholar
  14. 14.
    V. I. Gulyaev and M. Nabil, “Resonant interaction of a beam and an elastic foundation during the motion of a periodic system of concentrated loads,” Int. Appl. Mech., 41, No. 5, 560–565 (2005).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. I. Gulyaev
    • 1
  • P. Z. Lugovoi
    • 2
  • M. A. Belova
    • 1
  • I. L. Solov’ev
    • 1
  1. 1.National University of TransportKievUkraine
  2. 2.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKiev

Personalised recommendations