International Applied Mechanics

, Volume 42, Issue 5, pp 495–506 | Cite as

Influence of the projectile composition and shape during an impact

  • C. Strub
  • M.-F. Robbe
  • T. Grunenwald


Slug impact is considered a potential risk for pressurized water reactors in the event of a severe accident. The German team of FZK investigates this issue through the reduced-scale experiments BERDA, whose goal is to quantify the maximum mechanical energy that the upper head of a PWR is able to withstand. As these tests are performed with a material different from the one that would intervene in a real accident, the French team of CEA studies the influence of the slug material with the SKIPPY mock-ups. In order to understand better the impact process, relevant theoretical study has been conducted with the EUROPLEXUS code


composition and shape of slugs slug impact upper head of pressurized water reactor mechanical energy experimental investigation simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Bulat, “Rock deformation problems,” Int. Appl. Mech., 40, No. 12, 1311–1322 (2004).MATHCrossRefGoogle Scholar
  2. 2.
    H. Bung, P. Galon, M. Lepareux, and A. Letellier, “A Lagrangian particle method for treatment of impact and penetration problems,” in: Proc. Euro-Dymat., Section C8, Les éditions de physique, Oxford (1994), pp. 507–513.Google Scholar
  3. 3.
    F. Casadei and J. P. Halleux, “Europlexus: A numerical tool for fast transient dynamics with fluid-structure interaction,” in: Proc. SAMTECH Users Conference, Toulouse, France, February (2003).Google Scholar
  4. 4.
    P. Galon, H. Bung, M. Lepareux, and A. Combescure, “A new method for the treatment of impact and penetration problems,” in: Proc. Int. Conf. on Structural Mechanics In Reactor Technology 12, Vol. B, Stuttgart, Germany (1993).Google Scholar
  5. 5.
    P. Galon, H. Bung, M. Lepareux, and T. Grünenwald, “Simulations of slug impact with smoothed particle hydrodynamics: Some remarks on frequently asked questions,” in: Proc. Euro-Dymat., J. de physique IV France, Les éditions de physique, Vol. 10 (2000), pp. 427–432.Google Scholar
  6. 6.
    A. N. Guz and F. G. Makhort, “The physical fundamentals of the ultrasonic nondestructive stress analysis of solids,” Int. Appl. Mech., 36, No. 9, 1119–1149 (2000).MATHCrossRefGoogle Scholar
  7. 7.
    A. N. Guz, M. S. Dyshel’, and V. M. Nazarenko, “Fracture and stability of materials and structural elements with cracks: Approaches and results,” Int. Appl. Mech., 40, No. 12, 1323–1359 (2004).MATHCrossRefGoogle Scholar
  8. 8.
    H. H. Hennies, “Research and development to improve containment for the next generation of pressurized water reactor plants,” Interdisc. Sci. Rev., 18, No. 3, 243 (1993).Google Scholar
  9. 9.
    G. Keßler and J. Eibl, “Severe accident containment loads and possible design concepts of future large pressurized water reactors,” Nuclear Technology, 111, 358–368 (1995).Google Scholar
  10. 10.
    S. N. Konyukhov, “Applied mechanics problems accompanying spacecraft launches from a floating platform and their resolution by the Sea Launch Project,” Int. Appl. Mech., 40, No. 2, 115–139 (2004).MATHCrossRefGoogle Scholar
  11. 11.
    R. Krieg, T. Malmberg, G. Messemer, G. Hoffmann, T. Stach, and E. Stratmanns, “Model experiments BERDA describing the impact of molten core material against a PWR vessel head,” in: Proc. Int. Topical Meeting on Advanced Reactor Safety, Vol. III, Orlando, Florida, June 1–5 (1997).Google Scholar
  12. 12.
    R. Krieg and T. Grünenwald, “Mechanical loads to the reactor pressure vessel (BERDA program, single effect tests),” in: Proc. CEA/FKZ/Industry Seminar on EPR Related Severe Accident Research, Cadarache, France, November 26–27 (1998).Google Scholar
  13. 13.
    R. Krieg, B. Göller, G. Hailfinger, G. Messemer, and G. Vorberg, “Reactor pressure vessel head loaded by a corium slug. Results of model experiments BERDA I,” in: Proc. Int. Conf. on Structural Mechanics in Reactor Technology 15, Paper P 02/6, Seoul, Korea, August 15–20 (1999).Google Scholar
  14. 14.
    R. Krieg, B. Dolensky, B. Göller, G. Hailfinger, O. Jonatzke, T. Malmberg, G. Messemer, E. Stratmanns, G. Vorberg, H. Benz, and W. Ratajczak, “Load carrying capacity of a reactor vessel head under corium slug impact from a postulated in-vessel steam explosion,” Nuclear Engineering and Design, 202, 179–196 (2000).CrossRefGoogle Scholar
  15. 15.
    V. D. Kubenko, “Impact of blunted bodies on a liquid or elastic medium,” Int. Appl. Mech., 40, No. 11, 1185–1225 (2004).MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Lepareux, J. M. Michelin, and D. Thiault, Plexus-R: une extension de Plexus à la robotique, CEA report DMT/94-138 (1994).Google Scholar
  17. 17.
    A. Letellier, Contribution à la modélisation des impacts d’oiseaux sur les aubes de ré acteurs d’avions, PhD report, University of Evry, France (1996).Google Scholar
  18. 18.
    G. E. Lucas, W. H. Amarasooriya, and T. G. Theofanous, “An assessment of steam-explosion-induced containment failure,” Nuclear Science and Engineering, 97, 316 (1987).Google Scholar
  19. 19.
    F. Luzeau, Interpretation de trois essais SKIPPY2: Impacts d’un spécimen de sable par une masse indeformable chutante, CEA report DMT/98-033 (1998).Google Scholar
  20. 20.
    S. Potapov, “Modelling of Aquitaine II pipe whipping test with Europlexus Fast Dynamic code,” in: Proc. Int. Conf. on Structural Mechanics in Reactor Technology 17, Paper P 01/5, Prague, Czechoslovakia, August (2003).Google Scholar
  21. 21.
    V. F. Prisnyakov, “Development of mechanics in support of rocket technology in Ukraine,” Int. Appl. Mech., 39, No. 6, 656–678 (2003).MATHCrossRefGoogle Scholar
  22. 22.
    M. F. Robbe, N. Vivien, M. Valette, and E. Berglas, “Use of thermalhydraulic and mechanical linked computations to estimate the mechanical consequences of a steam explosion,” J. Mech. Eng., 52, No. 2, 65–90 (2001).Google Scholar
  23. 23.
    M. F. Robbe and M. Lepareux, “Evaluation of the mechanical consequences of a steam explosion in a nuclear reactor,” J. Theor. Appl. Mech., 32, No. 1, 48–84 (2002).Google Scholar
  24. 24.
    M. F. Robbe and P. Sardain, “Comparison of several simplified models and scenarios to simulate a steam explosion in a tank,” J. Mech. Eng., 54, No. 2, 82–100 (2003).Google Scholar
  25. 25.
    M. F. Robbe and S. Potapov, “Modeling of the depressurisation induced by a pipe-rupture in the primary circuit of a nuclear plant,” Revue Européenne des Eléments Finis, 12, No. 4, 459–485 (2003).Google Scholar
  26. 26.
    M. F. Robbe, B. Dolensky, C. Strub, and P. Galon, “Overview of the German and French works relative to slug impact: Numerical results,” J. Theor. Appl. Mech., 1 (2006).Google Scholar
  27. 27.
    C. W. Smith, “Measurement of fracture parameters in three-dimensional cracked-body problems,” Int. Appl. Mech., 39, No. 5, 503–524 (2003).MATHCrossRefGoogle Scholar
  28. 28.
    C. Strub, Calcul exploratoire d’un essai SKIPPY2: Impact d’un spécimen de sable par une masse indéformable chutante, CEA report DMT/97-597 (1997).Google Scholar
  29. 29.
    E. Studer and P. Galon, “Hydrogen combustion loads: Plexus calculations,” Nuclear Engineering and Design, 174, 119–134 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • C. Strub
    • 1
  • M.-F. Robbe
    • 1
  • T. Grunenwald
    • 1
  1. 1.Atomic Energy CommissionFrance

Personalised recommendations