Advertisement

Regularity of minima: An invitation to the dark side of the calculus of variations

  • Giuseppe Mingione
Article

Abstract

I am presenting a survey of regularity results for both minima of variational integrals, and solutions to non-linear elliptic, and sometimes parabolic, systems of partial differential equations. I will try to take the reader to the Dark Side...

Keywords

regularity minimizers Dark Side 

References

  1. [1]
    E. Acerbi, N. Fusco: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984), 125–145.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E. Acerbi, N. Fusco: A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987), 261–281.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    E. Acerbi, N. Fusco: Local regularity for minimizers of nonconvex integrals. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 16 (1989), 603–636.MathSciNetMATHGoogle Scholar
  4. [4]
    E. Acerbi, N. Fusco: Partial regularity under anisotropic (p, q) growth conditions. J. Differ. Equations 107 (1994), 46–67.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    E. Acerbi, G. Mingione: Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156 (2001), 121–140.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    E. Acerbi, G. Mingione: Regularity results for a class of quasiconvex functionals with nonstandard growth. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 30 (2001), 311–339.MathSciNetMATHGoogle Scholar
  7. [7]
    E. Acerbi, G. Mingione: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164 (2002), 213–259.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    E. Acerbi, G. Mingione: Gradient estimates for the p(x)-Laplacean system. J. Reine Angew. Math. 584 (2005), 117–148.MathSciNetMATHGoogle Scholar
  9. [9]
    E. Acerbi, G. Mingione: Gradient estimates for a class of parabolic systems. Duke Math. J. To appear.Google Scholar
  10. [10]
    E. Acerbi, G. Mingione, and G. A. Seregin: Regularity results for parabolic systems related to a class of non Newtonian fluids. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 21 (2004), 25–60.MathSciNetMATHGoogle Scholar
  11. [11]
    Yu. A. Alkhutov: The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition. Differ. Equations 33 (1997), 1653–1663.MathSciNetMATHGoogle Scholar
  12. [12]
    F. J. Almgren: Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Ann. Math. 87 (1968), 321–391.MathSciNetCrossRefGoogle Scholar
  13. [13]
    F. J. Almgren: Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems with Constraints. Mem. Am. Math. Soc. 165. Am. Math. Soc. (AMS), Providence, 1976.Google Scholar
  14. [14]
    L. Ambrosio: Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Lecture Notes. Scuola Normale Superiore, Pisa, 1995. (In Italian.)Google Scholar
  15. [15]
    S. N. Antontsev, S. I. Shmarev: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal., Theory Methods Appl. 60 (2005), 515–545.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S. N. Antontsev, S. I. Shmarev: Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions.Google Scholar
  17. [17]
    S. N. Antontsev, V. V. Zhikov: Higher integrability for parabolic equations of p(x; t)-Laplacian type. Adv. Differential Equations 10 (2005), 1053–1080.MathSciNetMATHGoogle Scholar
  18. [18]
    G. Anzellotti: On the C 1,α-regularity of ω-minima of quadratic functionals. Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 2 (1983), 195–212.MathSciNetMATHGoogle Scholar
  19. [19]
    A. A. Arkhipova: Partial regularity up to the boundary of weak solutions of elliptic systems with nonlinearity q greater than two. J. Math. Sci. 115 (2003), 2735–2746.MathSciNetCrossRefGoogle Scholar
  20. [20]
    G. Aronsson, M. G. Crandall, and P. Juutinen: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc., New Ser. 41 (2004), 439–505.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    K. Astala: Area distortion of quasiconformal mappings. Acta Math. 173 (1994), 37–60.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    H. Attouch, C. Sbordone: Asymptotic limits for perturbed functionals of calculus of variations. Ric. Mat. 29 (1980), 85–124.MathSciNetMATHGoogle Scholar
  23. [23]
    J. M. Ball: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1977), 337–403.MATHGoogle Scholar
  24. [24]
    J. M. Ball: Some open problems in elasticity. In: Geometry, Mechanics, and Dynamics (P. Newton, ed.). Springer-Verlag, New York, 2002, pp. 3–59.CrossRefGoogle Scholar
  25. [25]
    J. M. Ball, V. J. Mizel: One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation. Arch. Ration. Mech. Anal. 90 (1985), 325–388.MathSciNetMATHGoogle Scholar
  26. [26]
    J. M. Ball, F. Murat: W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984), 225–253.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    J. M. Ball, J. C. Currie, and P. J. Olver: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41 (1981), 135–174.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    L. Beck: Partielle Regularität für Schwache Lösungen nichtlinearer elliptischer Systeme: der Subquadratische Fall. Diploma Thesis. Friedrich-Alexander-Universität, Erlangen-Nürnberg, 2005. (In German.)Google Scholar
  29. [29]
    L. Beck: Boundary regularity results for systems with sub-linear growth. To appear.Google Scholar
  30. [30]
    I. Benedetti, E. Mascolo: Regularity of minimizers for nonconvex vectorial integrals with p-q growth via relaxation methods. Abstr. Appl. Anal. (2004), 27–44.Google Scholar
  31. [31]
    A. Bensoussan, J. Frehse: Regularity Results for Nonlinear Elliptic Systems and Applications. Applied Mathematical Sciences 151. Springer-Verlag, Berlin, 2002.MATHGoogle Scholar
  32. [32]
    J. J. Bevan: Polyconvexity and counterexamples to regularity in the multidimensional calculus of variations. PhD. Thesis. Oxford, 2003.Google Scholar
  33. [33]
    J. Bevan: Singular minimizers of strictly polyconvex functionals in ℝ2×2.Calc. Var. Partial Differ. Equ. 23 (2005), 347–372.MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    T. Bhattacharya, F. Leonetti: A new Poincaré inequality and its application to the regularity of minimizers of integral functionals with nonstandard growth. Nonlinear Anal., Theory Methods Appl. 17 (1991), 833–839.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    T. Bhattacharya, F. Leonetti: W 2,2 regularity for weak solutions of elliptic systems with nonstandard growth. J. Math. Anal. Appl. 176 (1993), 224–234.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    M. Bildhauer: Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions. Lecture Notes in Mathematics Vol. 1818. Springer-Verlag, Berlin, 2003.MATHGoogle Scholar
  37. [37]
    M. Bildhauer: A priori gradient estimates for bounded generalized solutions of a class of variational problems with linear growth. J. Convex Anal. 9 (2002), 117–137.MathSciNetMATHGoogle Scholar
  38. [38]
    M. Bildhauer, M. Fuchs: Partial regularity for variational integrals with (s, μ, q)-growth. Calc. Var. Partial Differ. Equ. 13 (2001), 537–560.MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    M. Bildhauer, M. Fuchs: Partial regularity for a class of anisotropic variational integrals with convex hull property. Asymptotic Anal. 32 (2002), 293–315.MathSciNetMATHGoogle Scholar
  40. [40]
    M. Bildhauer, M. Fuchs: C 1,α-solutions to non-autonomous anisotropic variational problems. Calc. Var. Partial Differ. Equ. 24 (2005), 309–340.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    M. Bildhauer, M. Fuchs, and X. Zhong: A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids. Manuscr. Math. 116 (2005), 135–156.MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    S. S. Byun: Parabolic equations with BMO coe-cients in Lipschitz domains. J. Differ. Equations 209 (2005), 229–265.MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    L. Boccardo, P. Marcellini, and C. Sbordone: L-regularity for variational problems with sharp non-standard growth conditions. Boll. Unione Mat. Ital. VII. Ser. A 4 (1990), 219–225.MathSciNetMATHGoogle Scholar
  44. [44]
    B. Bojarski, T. Iwaniec: Analytical foundations of the theory of quasiconformal mappings in ℝ n. Ann. Acad. Sci. Fenn., Ser. A I 8 (1983), 257–324.MathSciNetMATHGoogle Scholar
  45. [45]
    B. Bojarski, C. Sbordone, and I. Wik: The Muckenhoupt class A1(R). Stud. Math. 101 (1992), 155–163.MathSciNetMATHGoogle Scholar
  46. [46]
    E. Bombieri: Regularity theory for almost minimal currents. Arch. Ration. Mech. Anal. 78 (1982), 99–130.MathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    M. Bonk, J. Heinonen: Smooth quasiregular mappings with branching. Publ. Math., Inst. Hautes É tud. Sci. 100 (2004), 153–170.MathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    G. Buttazzo, M. Belloni: A survey of old and recent results about the gap phenomenon in the Calculus of Variations. In: Recent Developments in Well-posed Variational Problems 331 (R. Lucchetti et al., eds.). Kluwer Academic Publishers, Dordrecht, 1995, pp. 1–27.Google Scholar
  49. [49]
    G. Buttazzo, V. J. Mizel: Interpretation of the Lavrentiev Phenomenon by relaxation. J. Funct. Anal. 110 (1992), 434–460.MathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    R. Caccioppoli: Limitazioni integrali per le soluzioni di un’equazione lineare ellitica a derivate parziali. Giorn. Mat. Battaglini, IV. Ser. 80 (1951), 186–212. (In Italian.)MathSciNetGoogle Scholar
  51. [51]
    L. A. Caffarelli, I. Peral: On W 1,p estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51 (1998), 1–21.MathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    S. Campanato: Hölder continuity of the solutions of some non-linear elliptic systems. Adv. Math. 48 (1983), 15–43.MathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    S. Campanato: Elliptic systems with non-linearity q greater than or equal to two. Regularity of the solution of the Dirichlet problem. Ann. Mat. Pura Appl., IV. Ser. 147 (1987), 117–150.MathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    S. Campanato: Hölder continuity and partial Hölder continuity results for H 1, q-solutions of nonlinear elliptic systems with controlled growth. Rend. Sem. Mat. Fis. Milano 52 (1982), 435–472.MathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    S. Campanato: Some new results on differential systems with monotonicity property. Boll. Unione Mat. Ital., VII. Ser. 2 (1988), 27–57.MathSciNetMATHGoogle Scholar
  56. [56]
    M. Carozza, N. Fusco, and G. Mingione: Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl., IV. Ser. 175 (1998), 141–164.MathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    P. Celada, G. Cupini, and M. Guidorzi: Existence and regularity of minimizers of nonconvex integrals with p-q growth. ESAIM Control Optim. Calc. Var. To appear.Google Scholar
  58. [58]
    Y. Chen, S. Levine, and R. Rao: Functionals with p(x)-growth in image processing. Preprint. 2004.Google Scholar
  59. [59]
    V. Chiadó Piat, A. Coscia: Hölder continuity of minimizers of functionals with variable growth exponent. Manuscr. Math. 93 (1997), 283–299.MATHGoogle Scholar
  60. [60]
    F. Chiarenza, M. Frasca, and P. Longo: W 2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 336 (1993), 841–853.MathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    M. Chipot, L. C. Evans: Linearization at infinity and Lipschitz estimates for certain problems in the calculus of variations. Proc. R. Soc. Edinb., Sect. A 102 (1986), 291–303.MathSciNetMATHGoogle Scholar
  62. [62]
    A. Cianchi: Boundedness of solutions to variational problems under general growth conditions. Commun. Partial Differ. Equations 22 (1997), 1629–1646.MathSciNetMATHGoogle Scholar
  63. [63]
    A. Cianchi: Local boundedness of minimizers of anisotropic functionals. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 17 (2000), 147–168.MathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    A. Cianchi, N. Fusco: Gradient regularity for minimizers under general growth conditions. J. Reine Angew. Math. 507 (1999), 15–36.MathSciNetMATHGoogle Scholar
  65. [65]
    F. Colombini: Un teorema di regolarità alla frontiera per soluzioni di sistemi ellittici quasi lineari. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 25 (1971), 115–161.MathSciNetMATHGoogle Scholar
  66. [66]
    A. Coscia, G. Mingione: Hölder continuity of the gradient of p(x)-harmonic mappings. C. R. Acad. Sci., Paris, Sér. I, Math. 328 (1999), 363–368.MathSciNetMATHGoogle Scholar
  67. [67]
    D. Cruz-Uribe, C. J. Neugebauer: The structure of the reverse Hölder classes. Trans. Am. Math. Soc. 347 (1995), 2941–2960.MathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    G. Cupini, N. Fusco, and R. Petti: Hölder continuity of local minimizers. J. Math. Anal. Appl. 235 (1999), 578–597.MathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    G. Cupini, M. Guidorzi, and E. Mascolo: Regularity of minimizers of vectorial integrals with p-q growth. Nonlinear Anal., Theory Methods Appl. 54 (2003), 591–616.MathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    G. Cupini, A. P. Migliorini: Hölder continuity for local minimizers of a nonconvex variational problem. J. Convex Anal. 10 (2003), 389–408.MathSciNetMATHGoogle Scholar
  71. [71]
    B. Dacorogna: Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46 (1982), 102–118.MathSciNetCrossRefMATHGoogle Scholar
  72. 0[72]
    B. Dacorogna: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences 78. Springer-Verlag, Berlin, 1989.Google Scholar
  73. [73]
    B. Dacorogna, P. Marcellini: Implicit Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications 37.Birkhäuser-Verlag, Boston, 1999.Google Scholar
  74. [74]
    A. Dall’Aglio, E. Mascolo, and G. Papi: Local boundedness for minima of functionals with nonstandard growth conditions. Rend. Mat. Appl., VII Ser. 18 (1998), 305–326.MathSciNetMATHGoogle Scholar
  75. [75]
    L. D’Apuzzo, C. Sbordone: Reverse Hölder inequalities. A sharp result. Rend. Mat. Appl., VII Ser. 10 (1990), 357–366.MathSciNetMATHGoogle Scholar
  76. [76]
    J. Daněček, O. John, and J. Stará: Interior C 1,γ-regularity for weak solutions of nonlinear second order elliptic systems. Math. Nachr. 276 (2004), 47–56.MathSciNetCrossRefMATHGoogle Scholar
  77. [77]
    E. De Giorgi: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino, P. I., III. Ser. 3 (1957), 25–43. (In Italian.)Google Scholar
  78. [78]
    E. De Giorgi: Frontiere orientate di misura minima. Seminario di Matematica della Scuola Normale Superiore. Pisa, 1960–61. (In Italian.)Google Scholar
  79. [79]
    E. De Giorgi: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Unione Mat. Ital., IV. Ser. 1 (1968), 135–137. (In Italian.)MATHGoogle Scholar
  80. [80]
    E. DiBenedetto: Intrinsic Harnack type inequalities for solutions of certain degenerate parabolic equations. Arch. Ration. Mech. Anal. 100 (1988), 129–147.MathSciNetMATHCrossRefGoogle Scholar
  81. [81]
    E. DiBenedetto: Degenerate Parabolic Equations. Universitext. Springer-Verlag, New York, 1993.MATHGoogle Scholar
  82. [82]
    E. DiBenedetto, A. Friedman: Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math. 357 (1985), 1–22.MathSciNetMATHGoogle Scholar
  83. [83]
    E. DiBenedetto, J. J. Manfredi: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Am. J. Math. 115 (1993), 1107–1134.MathSciNetCrossRefMATHGoogle Scholar
  84. [84]
    E. DiBenedetto, N. Trudinger: Harnack inequalities for quasiminima of variational integrals. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 1 (1984), 295–308.MathSciNetMATHGoogle Scholar
  85. [85]
    L. Diening: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129 (2005), 657–700.MathSciNetCrossRefMATHGoogle Scholar
  86. [86]
    L. Diening, P. Hästö, and A. Nekvinda: Open problems in variable exponent Lebesgue and Sobolev spaces. In: FSDONA Proceedings, Milovy, Czech Republic, 2004 (P. Drábek, J. Rákosník, eds.). 2004, pp. 38–58.Google Scholar
  87. [87]
    L. Diening, M. Råžička: Calderón-Zygmund operators on generalized Lebesgue spaces L p(·) and problems related to uid dynamics. J. Reine Angew. Math. 563 (2003), 197–220.MathSciNetMATHGoogle Scholar
  88. [88]
    G. Di Fazio: L p estimates for divergence form elliptic equations with discontinuous coefficients. Boll. Unione Mat. Ital., VII. Ser., A 10 (1996), 409–420.MATHGoogle Scholar
  89. [89]
    A. Dolcini, L. Esposito, and N. Fusco: C 0,α-regularity of ω-minima. Boll. Unione Mat. Ital., VII. Ser., A 10 (1996), 113–125.MathSciNetMATHGoogle Scholar
  90. [90]
    G. Dolzmann, J. Kristensen: Higher integrability of minimizing Young measures. Calc. Var. Partial Differ. Equ. 22 (2005), 283–301.MathSciNetCrossRefMATHGoogle Scholar
  91. [91]
    F. Duzaar, A. Gastel: Nonlinear elliptic systems with Dini continuous coefficients. Arch. Math. 78 (2002), 58–73.MathSciNetCrossRefMATHGoogle Scholar
  92. [92]
    F. Duzaar, A. Gastel, and J. F. Grotowski: Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal. 32 (2000), 665–687.MathSciNetCrossRefMATHGoogle Scholar
  93. [93]
    F. Duzaar, A. Gastel, and G. Mingione: Elliptic systems, singular sets and Dini continuity. Commun. Partial Differ. Equations 29 (2004), 1215–1240.MathSciNetCrossRefMATHGoogle Scholar
  94. [94]
    F. Duzaar, J. F. Grotowski: Optimal interior partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation. Manuscr. Math. 103 (2000), 267–298.MathSciNetCrossRefMATHGoogle Scholar
  95. [95]
    F. Duzaar, J. F. Grotowski, and M. Kronz: Partial and full boundary regularity for minimizers of functionals with nonquadratic growth. J. Convex Anal. 11 (2004), 437–476.MathSciNetMATHGoogle Scholar
  96. [96]
    F. Duzaar, J. F. Grotowski, and M. Kronz: Regularity of almost minimizers of quasiconvex variational integrals with subquadratic growth. Ann. Mat. Pura Appl., IV. Ser. 184 (2005), 421–448.MathSciNetCrossRefMATHGoogle Scholar
  97. [97]
    F. Duzaar, J. F. Grotowski, and K. Steffen: Optimal regularity results via A-harmonic approximation. In: Geometric Analysis and Nonlinear Partial Differential Equations (S. Hildebrandt, ed.). Springer-Verlag, Berlin, 2003, pp. 265–296.Google Scholar
  98. [98]
    F. Duzaar, J. Kristensen, and G. Mingione: The existence of regular boundary points for non-linear elliptic systems. J. Reine Angew. Math. To appear.Google Scholar
  99. [99]
    F. Duzaar, M. Kronz: Regularity of ω-minimizers of quasi-convex variational integrals with polynomial growth. Differ. Geom. Appl. 17 (2002), 139–152.MathSciNetCrossRefMATHGoogle Scholar
  100. [100]
    F. Duzaar, G. Mingione: The p-harmonic approximation and the regularity of p-harmonic maps. Calc. Var. Partial Differ. Equ. 20 (2004), 235–256.MathSciNetCrossRefMATHGoogle Scholar
  101. [101]
    F. Duzaar, G. Mingione: Regularity for degenerate elliptic problems via p-harmonic approximation. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 21 (2004), 735–766.MathSciNetCrossRefMATHGoogle Scholar
  102. [102]
    F. Duzaar, G. Mingione: Second order parabolic systems, optimal regularity, and singular sets of solutions. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 22 (2005), 705–751.MathSciNetCrossRefMATHGoogle Scholar
  103. [103]
    F. Duzaar, G. Mingione: Non-autonomous functionals with (p, q)-growth: regularity in borderline cases. In prepration.Google Scholar
  104. [104]
    F. Duzaar, K. Steffen: Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. J. Reine Angew. Math. 546 (2002), 73–138.MathSciNetMATHGoogle Scholar
  105. [105]
    I. Ekeland: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324–353.MathSciNetCrossRefMATHGoogle Scholar
  106. [106]
    A. Elcrat, N. G. Meyers: Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions. Duke Math. J. 42 (1975), 121–136.MathSciNetCrossRefMATHGoogle Scholar
  107. [107]
    M. Eleuteri: Hölder continuity results for a class of functionals with non-standard growth. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 7 (2004), 129–157.MathSciNetMATHGoogle Scholar
  108. [108]
    L. Esposito, F. Leonetti, and G. Mingione: Regularity for minimizers of functionals with p-q growth. Nonlinear Differ. Equ. Appl. 6 (1999), 133–148.MathSciNetCrossRefMATHGoogle Scholar
  109. [109]
    L. Esposito, F. Leonetti, and G. Mingione: Higher integrability for minimizers of integral functionals with (p, q) growth. J. Differ. Equations 157 (1999), 414–438.MathSciNetCrossRefMATHGoogle Scholar
  110. [110]
    L. Esposito, F. Leonetti, and G. Mingione: Regularity results for minimizers of irregular integrals with (p, q) growth. Forum Math. 14 (2002), 245–272.MathSciNetCrossRefMATHGoogle Scholar
  111. [111]
    L. Esposito, F. Leonetti, and G. Mingione: Sharp regularity for functionals with (p, q) growth. J. Differ. Equations 204 (2004), 5–55.MathSciNetMATHGoogle Scholar
  112. [112]
    L. Esposito, G. Mingione: A regularity theorem for ω-minimizers of integral functionals. Rend. Mat. Appl., VII. Ser. 19 (1999), 17–44.MathSciNetMATHGoogle Scholar
  113. [113]
    L. Esposito, G. Mingione: Partial regularity for minimizers of convex integrals with L log L-growth. Nonlinear Differ. Equ. Appl. 7 (2000), 107–125.MathSciNetCrossRefMATHGoogle Scholar
  114. [114]
    L. Esposito, G. Mingione: Partial regularity for minimizers of degenerate polyconvex energies. J. Convex Anal. 8 (2001), 1–38.MathSciNetMATHGoogle Scholar
  115. [115]
    L. C. Evans: Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95 (1986), 227–252.CrossRefMATHGoogle Scholar
  116. [116]
    L. C. Evans, R. F. Gariepy: On the partial regularity of energy-minimizing, area-preserving maps. Calc. Var. Partial Differ. Equ. 9 (1999), 357–372.MathSciNetCrossRefMATHGoogle Scholar
  117. [117]
    E. B. Fabes, D.W. Stroock: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96 (1986), 327–338.MathSciNetCrossRefMATHGoogle Scholar
  118. [118]
    X. Fan, D. Zhao: A class of De Giorgi type and Hölder continuity. Nonlinear Anal., Theory Methods Appl. 36 (1999), 295–318.MathSciNetCrossRefGoogle Scholar
  119. [119]
    X. Fan, D. Zhao: The quasi-minimizer of integral functionals with m(x) growth conditions. Nonlinear Anal., Theory Methods Appl. 39 (2000), 807–816.MathSciNetCrossRefGoogle Scholar
  120. [120]
    D. Faraco, P. Koskela, and X. Zhong: Mappings of finite distortion: the degree of regularity. Adv. Math. 190 (2005), 300–318.MathSciNetCrossRefMATHGoogle Scholar
  121. [121]
    V. Ferone, N. Fusco: Continuity properties of minimizers of integral functionals in a limit case. J. Math. Anal. Appl. 202 (1996), 27–52.MathSciNetCrossRefMATHGoogle Scholar
  122. [122]
    I. Fonseca, N. Fusco: Regularity results for anisotropic image segmentation models. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 24 (1997), 463–499.MathSciNetMATHGoogle Scholar
  123. [123]
    I. Fonseca, N. Fusco, P. Marcellini: An existence result for a nonconvex variational problem via regularity. ESAIM, Control Optim. Calc. Var. 7 (2002), 69–95.MathSciNetCrossRefMATHGoogle Scholar
  124. [124]
    I. Fonseca, G. Leoni, and J. Malý: Weak continuity and lower semicontinuity results for determinants. Arch. Ration. Mech. Anal. 178 (2005), 411–448.MathSciNetCrossRefMATHGoogle Scholar
  125. [125]
    I. Fonseca, J. Malý: Relaxation of multiple integrals below the growth exponent. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 14 (1997), 309–338.CrossRefMATHGoogle Scholar
  126. [126]
    I. Fonseca, J. Malý, and G. Mingione: Scalar minimizers with fractal singular sets. Arch. Ration. Mech. Anal. 172 (2004), 295–307.MathSciNetCrossRefMATHGoogle Scholar
  127. [127]
    M. Foss: Examples of the Lavrentiev Phenomenon with continuous Sobolev exponent dependence. J. Convex Anal. 10 (2003), 445–464.MathSciNetMATHGoogle Scholar
  128. [128]
    M. Foss: A condition sufficient for the partial regularity of minimizers in two-dimensional nonlinear elasticity. In: The p-harmonic Equation and Recent Advances in Analysis. Contemp. Math. 370 (P. Poggi-Corradini, ed.). Amer. Math. Soc., Providence, 2005.Google Scholar
  129. [129]
    M. Foss: Global regularity for almost minimizers of nonconvex variational problems.Google Scholar
  130. [130]
    M. Foss, W. J. Hrusa, and V. J. Mizel: The Lavrentiev gap phenomenon in nonlinear elasticity. Arch. Ration. Mech. Anal. 167 (2003), 337–365.MathSciNetCrossRefMATHGoogle Scholar
  131. [131]
    M. Foss, W. J. Hrusa, and V. J. Mizel: The Lavrentiev phenomenon in nonlinear elasticity. J. Elasticity 72 (2003), 173–181.MathSciNetCrossRefMATHGoogle Scholar
  132. [132]
    J. Frehse: A note on the Hölder continuity of solutions of variational problems. Abh. Math. Semin. Univ. Hamb. 43 (1975), 59–63.MathSciNetMATHGoogle Scholar
  133. [133]
    J. Frehse, G. A. Seregin: Regularity of Solutions to Variational Problems of the Deformation Theory of Plasticity with Logarithmic Hardening. Amer. Math. Soc. Transl. Ser. 2, 193.Amer. Math. Soc., Providence, 1999.Google Scholar
  134. [134]
    M. Fuchs: Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions. Analysis 7 (1987), 83–93.MathSciNetMATHGoogle Scholar
  135. [135]
    M. Fuchs, G. Li: Global gradient bounds for relaxed variational problems. Manuscr. Math. 92 (1997), 287–302.MathSciNetMATHGoogle Scholar
  136. [136]
    M. Fuchs, G. Mingione: Full C 1,α-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscr. Math. 102 (2000), 227–250.MathSciNetCrossRefMATHGoogle Scholar
  137. [137]
    M. Fuchs, G. A. Seregin: Some remarks on non-Newtonian uids including nonconvex perturbations of the Bingham and Powell-Eyring model for viscoplastic fluids. Math. Models Methods Appl. Sci. 7 (1997), 405–433.MathSciNetCrossRefMATHGoogle Scholar
  138. [138]
    M. Fuchs, G. A. Seregin: A regularity theory for variational integrals with L ln L-growth. Calc. Var. Partial Differ. Equ. 6 (1998), 171–187.MathSciNetCrossRefMATHGoogle Scholar
  139. [139]
    M. Fuchs, G. A. Seregin: Hölder continuity for weak extremals of some two-dimensional variational problems related to nonlinear elasticity. Adv. Math. Sci. Appl. 7 (1997), 413–425.MathSciNetMATHGoogle Scholar
  140. [140]
    M. Fuchs, G. A. Seregin: Partial regularity of the deformation gradient for some model problems in nonlinear two-dimensional elasticity. St. Petersbg. Math. J. 6 (1995), 1229–1248.MathSciNetGoogle Scholar
  141. [141]
    N. Fusco: Quasiconvexity and semicontinuity for higher-order multiple integrals. Ric. Mat. 29 (1980), 307–323.MathSciNetMATHGoogle Scholar
  142. [142]
    N. Fusco, J. E. Hutchinson: C 1,α-partial regularity of functions minimising quasiconvex integrals. Manuscr. Math. 54 (1986), 121–143.MathSciNetCrossRefMATHGoogle Scholar
  143. [143]
    N. Fusco, J. E. Hutchinson: Partial regularity for minimisers of certain functionals having nonquadratic growth. Ann. Mat. Pura Appl., IV. Ser. 155 (1989), 1–24.MathSciNetCrossRefMATHGoogle Scholar
  144. [144]
    N. Fusco, J. E. Hutchinson: Partial regularity in problems motivated by nonlinear elasticity. SIAM J. Math. Anal. 22 (1991), 1516–1551.MathSciNetCrossRefMATHGoogle Scholar
  145. [145]
    N. Fusco, J. E. Hutchinson: Partial regularity and everywhere continuity for a model problem from non-linear elasticity. J. Aust. Math. Soc., Ser. A 57 (1994), 158–169.MathSciNetMATHGoogle Scholar
  146. [146]
    N. Fusco, C. Sbordone: Higher integrability from reverse Jensen inequalities with different supports. In: Partial Differential Equations and the Calculus of Variations. Essays in Honor of Ennio De Giorgi. Birkhä user-Verlag, Boston, 1989, pp. 541–562.Google Scholar
  147. [147]
    N. Fusco, C. Sbordone: Local boundedness of minimizers in a limit case. Manuscr. Math. 69 (1990), 19–25.MathSciNetMATHGoogle Scholar
  148. [148]
    N. Fusco, C. Sbordone: Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions. Commun. Pure Appl. Math. 43 (1990), 673–683.MathSciNetMATHGoogle Scholar
  149. [149]
    N. Fusco, C. Sbordone: Some remarks on the regularity of minima of anisotropic integrals. Commun. Partial Differ. Equations 18 (1993), 153–167.MathSciNetMATHGoogle Scholar
  150. [150]
    F. W. Gehring: The L p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130 (1973), 265–277.MathSciNetCrossRefMATHGoogle Scholar
  151. [151]
    M. Giaquinta: A counter-example to the boundary regularity of solutions to quasilinear systems. Manuscr. Math. 24 (1978), 217–220.MathSciNetCrossRefMATHGoogle Scholar
  152. [152]
    M. Giaquinta: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies 105. Princeton University Press, Princeton, 1983.MATHGoogle Scholar
  153. [153]
    M. Giaquinta: Direct methods for regularity in the calculus of variations. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France seminar, Vol. VI (Paris, 1982/1983). Res. Notes in Math. 109. Pitman, Boston, 1984, pp. 258–274.Google Scholar
  154. [154]
    M. Giaquinta: The problem of the regularity of minimizers. In: Proceedings of the International Congress of Mathematicians, Vol. 2 (Berkeley, California, 1986). Amer. Math. Soc., Providence, 1987, pp. 1072–1083.Google Scholar
  155. [155]
    M. Giaquinta: Growth conditions and regularity. A counterexample. Manuscr. Math. 59 (1987), 245–248.MathSciNetCrossRefMATHGoogle Scholar
  156. [156]
    M. Giaquinta: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures in Mathematics. Birkhäuser-Verlag, Basel, 1993.MATHGoogle Scholar
  157. [157]
    M. Giaquinta, E. Giusti: On the regularity of the minima of variational integrals. Acta Math. 148 (1982), 31–46.MathSciNetCrossRefMATHGoogle Scholar
  158. [158]
    M. Giaquinta, E. Giusti: Differentiability of minima of nondifferentiable functionals. Invent. Math. 72 (1983), 285–298.MathSciNetCrossRefMATHGoogle Scholar
  159. [159]
    M. Giaquinta, E. Giusti: Global C 1,α-regularity for second order quasilinear elliptic equations in divergence form. J. Reine Angew. Math. 351 (1984), 55–65.MathSciNetMATHGoogle Scholar
  160. [160]
    M. Giaquinta, G. Modica: Almost-everywhere regularity for solutions of nonlinear elliptic systems. Manuscr. Math. 28 (1979), 109–158.MathSciNetCrossRefMATHGoogle Scholar
  161. [161]
    M. Giaquinta, G. Modica: Regularity results for some classes of higher order nonlinear elliptic systems. J. Reine Angew. Math. 311/312 (1979), 145–169.MathSciNetGoogle Scholar
  162. [162]
    M. Giaquinta, G. Modica: Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscr. Math. 57 (1986), 55–99.MathSciNetCrossRefMATHGoogle Scholar
  163. [163]
    M. Giaquinta, M. Struwe: On the partial regularity of weak solutions on nonlinear parabolic systems. Math. Z. 179 (1982), 437–451.MathSciNetCrossRefMATHGoogle Scholar
  164. [164]
    D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin-Heidelberg-New York, 1977.Google Scholar
  165. [165]
    E. Giusti: Direct methods in the calculus of variations. World Scientific, Singapore, 2003.MATHGoogle Scholar
  166. [166]
    E. Giusti, M. Miranda: Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni. Boll. Unione Mat. Ital., IV. Ser. 1 (1968), 219–226. (In Italian.)MathSciNetMATHGoogle Scholar
  167. [167]
    E. Giusti, M. Miranda: Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari. Arch. Ration. Mech. Anal. 31 (1968), 173–184. (In Italian.)MathSciNetCrossRefMATHGoogle Scholar
  168. [168]
    M. Gromov: Partial Differential Relations. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, 1986.Google Scholar
  169. [169]
    J. F. Grotowski: Boundary regularity for nonlinear elliptic systems. Calc. Var. Partial Differ. Equ. 15 (2002), 353–388.MathSciNetCrossRefMATHGoogle Scholar
  170. [170]
    J. F. Grotowski: Boundary regularity for quasilinear elliptic systems. Commun. Partial Differ. Equations 27 (2002), 2491–2512.MathSciNetCrossRefMATHGoogle Scholar
  171. [171]
    C. Hamburger: Regularity of differential forms minimizing degenerate elliptic functionals. J. Reine Angew. Math. 431 (1992), 7–64.MathSciNetMATHGoogle Scholar
  172. [172]
    C. Hamburger: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl., IV. Ser. 169 (1995), 321–354.MathSciNetCrossRefMATHGoogle Scholar
  173. [173]
    C. Hamburger: Partial regularity for minimizers of variational integrals with discontinuous integrands. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 13 (1996), 255–282.MathSciNetMATHGoogle Scholar
  174. [174]
    C. Hamburger: Partial boundary regularity of solutions of nonlinear superelliptic systems. To appear.Google Scholar
  175. [175]
    C. Hamburger: Optimal regularity of minimzers of quasiconvex variational integrals. ESAIM Control Optim. Calc. Var. To appear.Google Scholar
  176. [176]
    W. Hao, S. Leonardi, and J. Nečas: An example of irregular solution to a nonlinear Euler-Lagrange elliptic system with real analytic coefficients. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 23 (1996), 57–67.MATHGoogle Scholar
  177. [177]
    R. M. Hardt: Singularities of harmonic maps. Bull. Am. Math. Soc., New Ser. 34 (1997), 15–34.MathSciNetCrossRefMATHGoogle Scholar
  178. [178]
    R. M. Hardt, F. G. Lin, and C. Y. Wang: The p-energy minimality of xx¦. Commun. Anal. Geom. 6 (1998), 141–152.MathSciNetMATHGoogle Scholar
  179. [179]
    P. Harjulehto, P. Hästö, and M. Koskenoja: The Dirichlet energy integral on intervals in variable exponent Sobolev spaces. Z. Anal. Anwend. 22 (2003), 911–923.MATHCrossRefGoogle Scholar
  180. [180]
    P. Hästö: Counter-examples of regularity in variable exponent Sobolev spaces. In: The p-harmonic Equation and Recent Advances in Analysis. Contemp. Math. 370 (P. Poggi-Corradini, ed.). Amer. Math. Soc., Providence, 2005, pp. 133–143.Google Scholar
  181. [181]
    J. Heinonen, T. Kilpeläinen, and O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs. Clarendon Press, Oxford, 1993.MATHGoogle Scholar
  182. [182]
    S. Hildebrandt, H. Kaul, and K.-O. Widman: An existence theorem for harmonic mappings of Riemanninan manifolds. Acta Math. 138 (1977), 1–16.MathSciNetCrossRefMATHGoogle Scholar
  183. [183]
    S. Hildebrandt, K.-O. Widman: Some regularity results for quasilinear elliptic systems of second order. Math. Z. 142 (1975), 67–86.MathSciNetCrossRefMATHGoogle Scholar
  184. [184]
    M.-C. Hong: Existence and partial regularity in the calculus of variations. Ann. Mat. Pura Appl., IV. Ser. 149 (1987), 311–328.CrossRefMATHGoogle Scholar
  185. [185]
    M.-C. Hong: Some remarks on the minimizers of variational integrals with nonstandard growth conditions. Boll. Unione Mat. Ital., VII. Ser., A 6 (1992), 91–101.MATHGoogle Scholar
  186. [186]
    M.-C. Hong: On the minimality of the p-harmonic map x/∣x∣∶B nS n−1. Calc. Var. Partial Differ. Equ. 13 (2001), 459–468.MATHGoogle Scholar
  187. [187]
    P.-A. Ivert: Regularitätsuntersuchungen von Lösungen elliptischer Systeme von quasilinearen Differentialgleichungen zweiter Ordnung. Manuscr. Math. 30 (1979), 53–88. (In German.)MathSciNetCrossRefMATHGoogle Scholar
  188. [188]
    P.-A. Ivert: Partial regularity of vector valued functions minimizing variational integrals. Preprint Univ. Bonn. 1982.Google Scholar
  189. [189]
    T. Iwaniec: Projections onto gradient-fields and L p-estimates for degenerated elliptic operators. Stud. Math. 75 (1983), 293–312.MathSciNetMATHGoogle Scholar
  190. [190]
    T. Iwaniec: p-harmonic tensors and quasiregular mappings. Ann. Math. 136 (1992), 589–624.MathSciNetCrossRefGoogle Scholar
  191. [191]
    T. Iwaniec: The Gehring lemma. In: Quasiconformal Mappings and Analysis, Ann Arbor, 1995 (P. Duren, ed.). Springer-Verlag, New York, 1998, pp. 181–204.Google Scholar
  192. [192]
    T. Iwaniec, G. Martin: Geometric Function Theory and Non-linear Analysis. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2001.MATHGoogle Scholar
  193. [193]
    T. Iwaniec, C. Sbordone: Quasiharmonic-fields. Ann. Inst. Henri Poincaré, Anal. Non Linè aire 18 (2001), 519–572.MathSciNetCrossRefMATHGoogle Scholar
  194. [194]
    O. John, J. Malý, and J. Stará: Nowhere continuous solutions to elliptic systems. Commentat. Math. Univ. Carol. 30 (1989), 33–43.MATHGoogle Scholar
  195. [195]
    J. Jost, M. Meier: Boundary regularity for minima of certain quadratic functionals. Math. Ann. 262 (1983), 549–561.MathSciNetCrossRefMATHGoogle Scholar
  196. [196]
    V. Kokilashvili, S. Samko: Maximal and fractional operators in weighted L p(x) spaces. Rev. Mat. Iberoam. 20 (2004), 493–515.MathSciNetMATHGoogle Scholar
  197. [197]
    J. Kinnunen: Sharp Results on Reverse Hölder Inequalities. Ann. Acad. Sci. Fenn. Ser. A I. Math. Dissertationes No 95. Suomalainen Tiedeakatemia, Helsinki, 1994.Google Scholar
  198. [198]
    J. Kinnunen, J. L. Lewis: Higher integrability for parabolic systems of p-Laplacian type. Duke Math. J. 102 (2000), 253–271.MathSciNetCrossRefMATHGoogle Scholar
  199. [199]
    J. Kinnunen, S. Zhou: A local estimate for nonlinear equations with discontinuous coefficients. Commun. Partial Differ. Equations 24 (1999), 2043–2068.MathSciNetMATHGoogle Scholar
  200. [200]
    B. Kirchheim, S. Müller, and V. Šverák: Studying nonlinear pde by geometry in matrix space. In: Geometric Analysis and Nonlinear Partial Differential Equations (S. Hildebrandt, ed.). Springer-Verlag, Berlin, 2003, pp. 347–395.Google Scholar
  201. [201]
    A. Koshelev: Regularity Problem for Quasilinear Elliptic and Parabolic Systems. Lecture Notes in Mathematics 1614. Springer-Verlag, Berlin, 1995.MATHGoogle Scholar
  202. [202]
    J. Kristensen: On the non-locality of quasiconvexity. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 16 (1999), 1–13.MathSciNetCrossRefMATHGoogle Scholar
  203. [203]
    J. Kristensen: Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313 (1999), 653–710.MathSciNetCrossRefMATHGoogle Scholar
  204. [204]
    J. Kristensen, G. Mingione: The singular set of ω-minima. Arch. Ration. Mech. Anal. 177 (2005), 93–114.MathSciNetCrossRefMATHGoogle Scholar
  205. [205]
    J. Kristensen, G. Mingione: Non-differentiable functionals and singular sets of minima. C. R. Acad. Sci. Paris 340 (2005), 93–98.MathSciNetMATHGoogle Scholar
  206. [206]
    J. Kristensen, G. Mingione: The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180 (2006), 331–398.MathSciNetCrossRefMATHGoogle Scholar
  207. [207]
    J. Kristensen, G. Mingione: The singular set of Lipschitzian minima of multiple integrals. Arch. Ration. Mech. Anal. To appear.Google Scholar
  208. [208]
    J. Kristensen, G. Mingione: The singular set of solutions to elliptic problems with rough coefficients. In preparation.Google Scholar
  209. [209]
    J. Kristensen, A. Taheri: Partial regularity of strong local minimizers in the multidimensional calculus of variations. Arch. Ration. Mech. Anal. 170 (2003), 63–89.MathSciNetCrossRefMATHGoogle Scholar
  210. [210]
    M. Kronz: Quasimonotone systems of higher order. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 6 (2003), 459–480.MathSciNetMATHGoogle Scholar
  211. [211]
    M. Kronz: Boundary regularity for almost minimizers of quasiconvex variational problems. Nonlinear Differ. Equations Appl. 12 (2005), 351–382.MathSciNetCrossRefMATHGoogle Scholar
  212. [212]
    M. Kronz: Habilitation Thesis. University of Erlangen-Nürneberg, Erlangen, 2006Google Scholar
  213. [213]
    O. A. Ladyzhenskaya, N. N. Ural’tseva: Linear and Quasilinear Elliptic Equations. Mathematics in Science and Engineering 46. Academic Press, New York-London, 1968.Google Scholar
  214. [214]
    O. A. Ladyzhenskaya, N. N. Ural’tseva: Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations. Commun. Pure Appl. Math. Ser. IX 23 (1970), 677–703.MathSciNetMATHGoogle Scholar
  215. [215]
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, Vol. 23. Amer. Math. Soc., Providence, 1968.Google Scholar
  216. [216]
    F. Leonetti: Maximum principle for vector-valued minimizers of some integral functionals. Boll. Unione Mat. Ital., VII. Ser., A 5 (1991), 51–56.MathSciNetMATHGoogle Scholar
  217. [217]
    F. Leonetti: Higher differentiability for weak solutions of elliptic systems with nonstandard growth conditions. Ric. Mat. 42 (1993), 101–122.MathSciNetMATHGoogle Scholar
  218. [218]
    F. Leonetti: Higher integrability for minimizers of integral functionals with nonstandard growth. J. Differ. Equations 112 (1994), 308–324.MathSciNetCrossRefMATHGoogle Scholar
  219. [219]
    F. Leonetti: Regularity results for minimizers of integral functionals with nonstandard growth. Atti Sem. Mat. Fis. Univ. Modena 43 (1995), 425–429.MathSciNetMATHGoogle Scholar
  220. [220]
    F. Leonetti: Pointwise estimates for a model problem in nonlinear elasticity. Forum Mathematicum 18 (2006), 529–535.CrossRefMATHMathSciNetGoogle Scholar
  221. [221]
    F. Leonetti, V. Nesi: Quasiconformal solutions to certain-first order systems and the proof of a conjecture of G.W. Milton. J. Math. Pures Appl. 76 (1997), 109–124.MathSciNetMATHGoogle Scholar
  222. [222]
    G. M. Lieberman: Gradient estimates for a class of elliptic systems. Ann. Mat. Pura Appl., IV. Ser. 164 (1993), 103–120.MathSciNetCrossRefMATHGoogle Scholar
  223. [223]
    G. M. Lieberman: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equations 16 (1991), 311–361.MathSciNetMATHGoogle Scholar
  224. [224]
    G. M. Lieberman: On the regularity of the minimizer of a functional with exponential growth. Commentat. Math. Univ. Carol. 33 (1992), 45–49.MathSciNetMATHGoogle Scholar
  225. [225]
    G. M. Lieberman: Gradient estimates for a new class of degenerate elliptic and parabolic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 21 (1994), 497–522.MathSciNetMATHGoogle Scholar
  226. [226]
    G. M. Lieberman: Gradient estimates for anisotropic elliptic equations. Adv. Differ. Equ. 10 (2005), 767–182.Google Scholar
  227. [227]
    P. Lindqvist: On the definition and properties of p-superharmonic functions. J. Reine Angew. Math. 365 (1986), 67–79.MathSciNetMATHGoogle Scholar
  228. [228]
    J.-L. Lions: Quelques méthodes de résolution des problèmes aux limites non liné aires. Dunod, Gauthier-Villars, Paris, 1969. (In French.)MATHGoogle Scholar
  229. [229]
    G. Lucas & co.: “Star Wars Episode 5: The empire strikes back” — Act, Darth Vader: “Come with me to the Dark Side...”.Google Scholar
  230. [230]
    J. Malý, W. P. Ziemer: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs, 51. Amer. Math. Soc., Providence, 1997.MATHGoogle Scholar
  231. [231]
    J. J. Manfredi: Regularity for minima of functionals with p-growth. J. Differ. Equations 76 (1988), 203–212.MathSciNetCrossRefMATHGoogle Scholar
  232. [232]
    J. J. Manfredi: Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations. PhD. Thesis. University of Washington, St. Louis.Google Scholar
  233. [233]
    P. Marcellini: On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 391–409.MathSciNetMATHGoogle Scholar
  234. [234]
    P. Marcellini: Un esemple de solution discontinue d’un problème variationnel dans le case scalaire. Ist. Mat. “U. Dini” No. 11, Firenze, 1987. (In Italian.)Google Scholar
  235. [235]
    P. Marcellini: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105 (1989), 267–284.MathSciNetCrossRefMATHGoogle Scholar
  236. [236]
    P. Marcellini: Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differ. Equations 90 (1991), 1–30.MathSciNetCrossRefMATHGoogle Scholar
  237. [237]
    P. Marcellini: Regularity for elliptic equations with general growth conditions. J. Differ. Equations 105 (1993), 296–333.MathSciNetCrossRefMATHGoogle Scholar
  238. [238]
    P. Marcellini: Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 23 (1996), 1–25.MathSciNetMATHGoogle Scholar
  239. [239]
    P. Marcellini: Regularity for some scalar variational problems under general growth conditions. J. Optimization Theory Appl. 90 (1996), 161–181.MathSciNetCrossRefMATHGoogle Scholar
  240. [240]
    P. Marcellini: Alcuni recenti sviluppi nei problemi 19-esimo e 20-esimo di Hilbert. Boll. Unione Mat. Ital., VII. Ser., A 11 (1997), 323–352. (In Italian.)MathSciNetMATHGoogle Scholar
  241. [241]
    P. Marcellini, G. Papi: Nonlinear elliptic systems with general growth. J. Differ. Equations 221 (2006), 412–443.MathSciNetCrossRefMATHGoogle Scholar
  242. [242]
    P. Marcellini, C. Sbordone: On the existence of minima of multiple integrals of the calculus of variations. J. Math. Pures Appl., IX. Sér. 62 (1983), 1–9.MathSciNetMATHGoogle Scholar
  243. [243]
    E. Mascolo, G. Migliorini: Everywhere regularity for vectorial functionals with general growth. ESAIM, Control Optim. Calc. Var. 9 (2003), 399–418.MathSciNetMATHGoogle Scholar
  244. [244]
    E. Mascolo, G. Papi: Local boundedness of minimizers of integrals of the calculus of variations. Ann. Mat. Pura Appl., IV. Ser. 167 (1994), 323–339.MathSciNetCrossRefMATHGoogle Scholar
  245. [245]
    E. Mascolo, G. Papi: Harnack inequality for minimizers of integral functionals with general growth conditions. NoDEA, Nonlinear Differ. Equ. Appl. 3 (1996), 231–244.MathSciNetCrossRefMATHGoogle Scholar
  246. [246]
    P. Mattila: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Studies in Adv. Math., 44.Cambridge University Press, Cambridge, 1995.MATHGoogle Scholar
  247. [247]
    V. Maz’ya: Examples of nonregular solutions of quasilinear elliptic equations with analytic coefficients. Funct. Anal. Appl. 2 (1968), 230–234.CrossRefMATHGoogle Scholar
  248. [248]
    G. Mingione: The singular set of solutions to non-differentiable elliptic systems. Arch. Ration. Mech. Anal. 166 (2003), 287–301.MathSciNetCrossRefMATHGoogle Scholar
  249. [249]
    G. Mingione: Bounds for the singular set of solutions to non linear elliptic systems. Calc. Var. Partial Differ. Equ. 18 (2003), 373–400.MathSciNetCrossRefMATHGoogle Scholar
  250. [250]
    G. Mingione, D. Mucci: Integral functionals and the gap problem: sharp bounds for relaxation and energy concentration. SIAM J. Math. Anal. 36 (2005), 1540–1579.MathSciNetCrossRefMATHGoogle Scholar
  251. [251]
    G. Mingione, F. Siepe: Full C 1,α-regularity for minimizers of integral functionals with L log L-growth. Z. Anal. Anwend. 18 (1999), 1083–1100.MathSciNetMATHGoogle Scholar
  252. [252]
    C. B. Morrey: Review to [77]. Mathematical Reviews MR0093649 (20 #172).Google Scholar
  253. [253]
    C. B. Morrey: Second order elliptic equations in several variables and Hölder continuity. Math. Z. 72 (1959), 146–164.MathSciNetCrossRefMATHGoogle Scholar
  254. [254]
    C. B. Morrey: Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2 (1952), 25–53.MathSciNetMATHGoogle Scholar
  255. [255]
    C. B. Morrey: Multiple Integrals in the Calculus of Variations. Die Grundlehren der mathematischen Wissenschaften, 130. Springer-Verlag, Berlin-Heidelberg-New York, 1966.MATHGoogle Scholar
  256. [256]
    C. B. Morrey: Partial regularity results for non-linear elliptic systems. J. Math. Mech. 17 (1968), 649–670.MathSciNetMATHGoogle Scholar
  257. [257]
    G. Moscariello, L. Nania: Hölder continuity of minimizers of functionals with nonstandard growth conditions. Ric. Mat. 40 (1991), 259–273.MathSciNetMATHGoogle Scholar
  258. [258]
    J. Moser: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13 (1960), 457–468.MATHGoogle Scholar
  259. [259]
    J. Moser: On Harnack’s theorem for elliptic differential equations. Commun. Pure Appl. Math. 14 (1961), 577–591.MATHGoogle Scholar
  260. [260]
    J. Moser: A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 17 (1964), 101–134.MATHGoogle Scholar
  261. [261]
    S. Müller: Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Lecture Notes in Math., 1713 (S. Hildebrandt, ed.). Springer-Verlag, Berlin, 1999, pp. 85–210.Google Scholar
  262. [262]
    S. Müller, V. Šverák: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 157 (2003), 715–742.MATHCrossRefGoogle Scholar
  263. [263]
    J. Musielak: Orlicz spaces and Modular spaces. Lecture Notes in Mathematics, 1034. Springer-Verlag, Berlin, 1983.MATHGoogle Scholar
  264. [264]
    J. Nash: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80 (1958), 931–954.MathSciNetCrossRefMATHGoogle Scholar
  265. [265]
    J. Nečas: Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity. In: Theor. Nonlin. Oper., Constr. Aspects. Proc. 4th Int. Summer School. Akademie-Verlag, Berlin, 1975, pp. 197–206.Google Scholar
  266. [266]
    J. Nečas, O. John, and J. Stará: Counterexample to the regularity of weak solution of elliptic systems. Commentat. Math. Univ. Carol. 21 (1980), 145–154.MATHGoogle Scholar
  267. [267]
    L. Nirenberg: Remarks on strongly elliptic partial differential equations. Commun. Pure Appl. Math. 8 (1955), 649–675.MathSciNetMATHGoogle Scholar
  268. [268]
    D. Phillips: On one-homogeneous solutions to elliptic systems in two dimensions. C. R., Math., Acad. Sci. Paris 335 (2002), 39–42.MathSciNetMATHGoogle Scholar
  269. [269]
    L. Piccinini, S. Spagnolo: On the Hölder continuity of solutions of second order elliptic equations in two variables. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26 (1972), 391–402.MathSciNetMATHGoogle Scholar
  270. [270]
    K. R. Rajagopal, T. Růžička: Mathematical modeling of electrorheological materials. Contin. Mech. and Thermodyn. 13 (2001), 59–78.CrossRefMATHGoogle Scholar
  271. [271]
    M. M. Rao, Z. D. Ren: Theory of Orlicz spaces. Marcel Dekker, New York, 1991.MATHGoogle Scholar
  272. [272]
    J.-P. Raymond: Lipschitz regularity of solutions of some asymptotically convex problems. Proc. R. Soc. Edinb., Sect. A 117 (1991), 59–73.MathSciNetMATHGoogle Scholar
  273. [273]
    T. Rivière: Everywhere discontinuous harmonic maps into spheres. Acta Math. 175 (1995), 197–226.MathSciNetCrossRefMATHGoogle Scholar
  274. [274]
    M. Růžička: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, 1748. Springer-Verlag, Berlin, 2000.MATHGoogle Scholar
  275. [275]
    A. Salli: On the Minkowski dimension of strongly porous fractal sets in ℝn. Proc. Lond. Math. Soc., III. Ser. 62 (1991), 353–372.MathSciNetMATHGoogle Scholar
  276. [276]
    S. Samko: On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integral Transforms Spec. Funct. 16 (2005), 461–482.MathSciNetMATHGoogle Scholar
  277. [277]
    C. Sbordone: Rearrangement of functions and reverse Hölder inequalities. Ennio De Giorgi colloq., H. Poincaré Inst., Paris, 1983. Res. Notes Math. 125 (1985), 139–148.MathSciNetGoogle Scholar
  278. [278]
    R. Schoen, K. Uhlenbeck: A regularity theory for harmonic maps. J. Differ. Geom. 17 (1982), 307–335.MathSciNetMATHGoogle Scholar
  279. [279]
    J. Serrin: Local behavior of solutions of quasi-linear equations. Acta Math. 111 (1964), 247–302.MathSciNetCrossRefMATHGoogle Scholar
  280. [280]
    L. Simon: Global estimates of Hölder continuity for a class of divergence-form elliptic equations. Arch. Ration. Mech. Anal. 56 (1974), 253–272.CrossRefMATHGoogle Scholar
  281. [281]
    L. Simon: Interior gradient bounds for non-uniformly elliptic equations. Indiana Univ. Math. J. 25 (1976), 821–855.MathSciNetCrossRefMATHGoogle Scholar
  282. [282]
    L. Simon: Rectifiability of the singular set of energy minimizing maps. Calc. Var. Partial Differ. Equ. 3 (1995), 1–65.MATHCrossRefGoogle Scholar
  283. [283]
    L. Simon: Lectures on Regularity and Singularities of Harmonic Maps. Birkhäuser-Verlag, Basel-Boston-Berlin, 1996.Google Scholar
  284. [284]
    J. Souček: Singular solutions to linear elliptic systems. Commentat. Math. Univ. Carol. 25 (1984), 273–281.MATHGoogle Scholar
  285. [285]
    G. Stampacchia: Problemi al contorno ellitici, con dati discontinui, dotati di soluzionie hö lderiane. Ann. Mat. Pura Appl., IV. Ser. 51 (1960), 1–37. (In Italian.)MathSciNetCrossRefMATHGoogle Scholar
  286. [286]
    G. Stampacchia: Hilbert’s twenty-third problem: extensions of the calculus of variations. In: Mathematical developments arising from Hilbert problems. Proc. Symp. Pure Math. 28, De Kalb 1974. 1976, pp. 611–628.Google Scholar
  287. [287]
    P. Sternberg, G. Williams, and W. P. Ziemer: Existence, uniqueness, and regularity for functions of least gradient. J. Reine Angew. Math. 430 (1992), 35–60.MathSciNetMATHGoogle Scholar
  288. [288]
    E. W. Stredulinsky: Higher integrability from reverse Hölder inequalities. Indiana Univ. Math. J. 29 (1980), 407–413.MathSciNetCrossRefMATHGoogle Scholar
  289. [289]
    B. Stroffolini: Global boundedness of solutions of anisotropic variational problems. Boll. Unione Mat. Ital., VII. Ser., A 5 (1991), 345–352.MathSciNetMATHGoogle Scholar
  290. [290]
    V. Šverák, X. Yan: A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var. Partial Differ. Equ. 10 (2000), 213–221.CrossRefMATHGoogle Scholar
  291. [291]
    V. Šverák, X. Yan: Non-Lipschitz minimizers of smooth uniformly convex variational integrals. Proc. Natl. Acad. Sci. USA 99 (2002), 15269–15276.Google Scholar
  292. [292]
    L. Székelyhidi, Jr.: The regularity of critical points of polyconvex functionals. Arch. Ration. Mech. Anal. 172 (2004), 133–152.MathSciNetCrossRefMATHGoogle Scholar
  293. [293]
    L. Székelyhidi, Jr.: Rank-one convex hulls in ℝ2×2. Calc. Var. Partial Differ. Equ. 22 (2005), 253–281.CrossRefMATHGoogle Scholar
  294. [294]
    G. Talenti: Boundedness of minimizers. Hokkaido Math. J. 19 (1990), 259–279.MathSciNetMATHGoogle Scholar
  295. [295]
    Qi Tang: Regularity of minimizers of nonisotropic integrals of the calculus of variations. Ann. Mat. Pura Appl., IV. Ser. 164 (1993), 77–87.CrossRefMATHGoogle Scholar
  296. [296]
    N. S. Trudinger: On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. 20 (1967), 721–747.MathSciNetMATHGoogle Scholar
  297. [297]
    N. S. Trudinger: Pointwise estimates and quasilinear parabolic equations. Commun. Pure Appl. Math. 21 (1968), 205–226.MathSciNetMATHGoogle Scholar
  298. [298]
    N. S. Trudinger: On the regularity of generalized solutions of linear, non-uniformly elliptic equations. Arch. Ration. Mech. Anal. 42 (1971), 50–62.MathSciNetCrossRefMATHGoogle Scholar
  299. [299]
    N. S. Trudinger: Linear elliptic operators with measurable coefficients. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 27 (1973), 265–308.MathSciNetMATHGoogle Scholar
  300. [300]
    N. S. Trudinger, X.-J. Wang: On the weak continuity of elliptic operators and applications to potential theory. Amer. J. Math. 124 (2002), 369–410.MathSciNetMATHGoogle Scholar
  301. [301]
    K. Uhlenbeck: Regularity for a class of non-linear elliptic systems. Acta Math. 138 (1977), 219–240.MathSciNetCrossRefMATHGoogle Scholar
  302. [302]
    N. N. Ural’tseva: Degenerate quasilinear elliptic systems. Semin. in Mathematics, V. A. Steklov Math. Inst., Leningrad 7 (1968), 83–99.Google Scholar
  303. [303]
    N. N. Ural’tseva, A. B. Urdaletova: The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations. Vestn. Leningr. Univ., Math. 16 (1984), 263–270.MATHGoogle Scholar
  304. [304]
    K.-O. Widman: Hölder continuity of solutions of elliptic systems. Manuscr. Math. 5 (1971), 299–308.MathSciNetCrossRefMATHGoogle Scholar
  305. [305]
    J. Wolf: Partial regularity of weak solutions to nonlinear elliptic systems satisfying a Dini condition. Z. Anal. Anwend. 20 (2001), 315–330.MATHGoogle Scholar
  306. [306]
    K.-W. Zhang: On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form. In: Partial Differential Equations, Proc. ymp. Tianjin/China, 1986. Lect. Notes Math. 1306. Springer-Verlag, Berlin, 1988, pp. 262–277.Google Scholar
  307. [307]
    V. V. Zhikov: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675–710.MathSciNetGoogle Scholar
  308. [308]
    V. V. Zhikov: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3 (1995), 249–269.MathSciNetMATHGoogle Scholar
  309. [309]
    V. V. Zhikov: On some variational problems. Russ. J. Math. Phys. 5 (1997), 105–116.MathSciNetMATHGoogle Scholar
  310. [310]
    V. V. Zhikov: Meyer-type estimates for solving the nonlinear Stokes system. Differ. Equations 33 (1997), 108–115.MathSciNetMATHGoogle Scholar
  311. [311]
    V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik: Homogenization of differential operators and integral functionals. Springer-Verlag, Berlin, 1994.MATHGoogle Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • Giuseppe Mingione
    • 1
  1. 1.Università di ParmaParmaItaly

Personalised recommendations