Advertisement

International Applied Mechanics

, Volume 42, Issue 4, pp 447–454 | Cite as

Forced nonlinear oscillations of cylindrical shells interacting with fluid flow

  • P. S. Koval’chuk
  • L. A. Kruk
Article

Abstract

The dynamic interaction of thin cylindrical shells with the fluid flow inside them under external periodic loads is studied. A technique is proposed to calculate the parameters of forced nonlinear oscillations of shells with a fluid moving with nearly critical velocities. The amplitude-frequency characteristics of the fluid-shell system under steady-state oscillation are plotted

Keywords

cylindrical shell perfect incompressible fluid critical velocity amplitude-frequency characteristics oscillatory stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Bogolyubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York (1962).Google Scholar
  2. 2.
    V. V. Bolotin, Nonconservative Problems in the Theory of Elastic Stability [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  3. 3.
    A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells [in Russian], Nauka, Moscow (1972).Google Scholar
  4. 4.
    A. S. Vol’mir, Shells in Fluid Flow: Problems of Hydroelasticity [in Russian], Nauka, Moscow (1979).Google Scholar
  5. 5.
    R. F. Ganiev and P. S. Koval’chuk, Dynamics of Systems of Rigid and Elastic Bodies [in Russian], Mashinostroenie, Moscow (1980).Google Scholar
  6. 6.
    V. D. Kubenko, P. S. Koval’chuk, and T. S. Krasnopol’skaya, Nonlinear Interaction of Flexural Vibration Modes of Cylindrical Shells [in Russian], Naukova Dumka, Kiev (1984).Google Scholar
  7. 7.
    V. D. Kubenko, P. S. Koval’chuk, and N. P. Podchasov, Nonlinear Vibrations of Cylindrical Shells [in Russian], Vyshcha Shkola, Kiev (1989).MATHGoogle Scholar
  8. 8.
    M. Amabili and M. P. Païdoussis, “Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction,” Appl. Mech. Rev., 56, No. 4, 349–381 (2003).CrossRefGoogle Scholar
  9. 9.
    M. Amabili, F. Pellicano, and M. P. Païdoussis, “Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part I: Stability,” J. Sound Vibr., 225, No. 4, 655–699 (1999).CrossRefADSGoogle Scholar
  10. 10.
    M. Amabili, F. Pellicano, and M. P. Païdoussis, “Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part IV: Large amplitude vibrations with flow,” J. Sound Vibr., 237, No. 4, 641–666 (2000).CrossRefADSGoogle Scholar
  11. 11.
    V. A. Dzupanov and S. V. Lilkova-Markova, “Divergent instability domains of a fluid-conveying cantilevered pipe with a combined support,” Int. Appl. Mech., 40, No. 3, 319–321 (2004).CrossRefGoogle Scholar
  12. 12.
    P. S. Koval’chuk, “Nonlinear vibrations of a cylindrical shell containing a flowing fluid,” Int. Appl. Mech., 41, No. 4, 405–412 (2005).CrossRefGoogle Scholar
  13. 13.
    P. S. Koval’chuk and L. A. Kruk, “The problem of forced nonlinear vibrations of cylindrical shells completely filled with liquid,” Int. Appl. Mech., 41, No. 2, 154–160 (2005).CrossRefGoogle Scholar
  14. 14.
    P. S. Koval’chuk and L. A. Kruk, “Wave deformation modes of fluid-containing cylindrical shells under periodic force,” Int. Appl. Mech., 41, No. 5, 526–531 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • P. S. Koval’chuk
    • 1
  • L. A. Kruk
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKiev

Personalised recommendations