Advertisement

International Applied Mechanics

, Volume 42, Issue 2, pp 136–144 | Cite as

On the direction of development of a thin fracture process zone at the tip of an interfacial crack between dissimilar media

  • A. A. Kaminsky
  • M. V. Dudik
  • L. A. Kipnis
Article

Abstract

The Wiener-Hopf method is used to study, under the conditions of plane strain, the direction of development of a thin fracture process zone at the tip of an interfacial crack in a piecewise homogeneous isotropic elastoplastic body. The zone is modeled by a straight line of tangential displacement discontinuity that emerges from the crack tip at an angle to the interface. The dependences of the zone length and the angle on the load and other parameters of the problem are investigated

Keywords

piecewise homogeneous isotropic elastoplastic body interfacial crack process zone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. D. Gakhov, Boundary-Value Problems [in Russian], Nauka, Moscow (1977).Google Scholar
  2. 2.
    A. A. Kaminsky and D. A. Gavrilov, Long-Term Fracture of Polymeric and Composite Materials with Cracks [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  3. 3.
    A. A. Kaminsky, L. A. Kipnis, and V. A. Kolmakova, “Slip lines at the end of a cut at the interface of different media,” Int. Appl. Mech., 31, No. 6, 491–495 (1995).CrossRefGoogle Scholar
  4. 4.
    A. A. Kaminsky, L. A. Kipnis, and V. A. Kolmakova, “On the Dugdale model for a crack at the interface of different media,” Int. Appl. Mech., 35, No. 1, 58–63 (1999).Google Scholar
  5. 5.
    H. T. Corten, “Fracture mechanics of composites,” in: H. Liebowitz (ed.), Fracture: An Advanced Treatise, Vol. 7, Acad. Press, New York (1972), pp. 695–703.Google Scholar
  6. 6.
    B. Noble, Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations, Pergamon Press, London (1958).Google Scholar
  7. 7.
    V. Z. Parton and P. I. Perlin, Methods of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1981).Google Scholar
  8. 8.
    Ya. S. Uflyand, Integral Transforms in Problems of Elasticity [in Russian], Nauka, Leningrad (1967).Google Scholar
  9. 9.
    G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974).Google Scholar
  10. 10.
    A. A. Kaminsky, “Analyzing the laws of stable subcritical growth of cracks in polymeric materials on the basis of fracture mesomechanics models: Theory and experiment,” Int. Appl. Mech., 40, No. 8, 829–846 (2004).MATHCrossRefGoogle Scholar
  11. 11.
    A. A. Kaminsky, L. A. Kipnis, and M. V. Dudik, “Initial development of the prefracture zone near the tip of a crack reaching the interface between dissimilar media,” Int. Appl. Mech., 40, No. 2, 176–182 (2004).CrossRefGoogle Scholar
  12. 12.
    A. A. Kaminsky, L. A. Kipnis, and M. V. Dudik, “Modeling of the crack tip plastic zone by two slip lines and the order of stress singularity,” Int. J. Fract., 127, No. 1, L105–L109 (2004).CrossRefGoogle Scholar
  13. 13.
    A. A. Kaminsky and Yu. A. Chernoivan, “Wedging of a viscoelastoplastic orthotropic composite,” Int. Appl. Mech., 41, No. 4, 352–357 (2005).CrossRefGoogle Scholar
  14. 14.
    A. A. Kaminsky and G. V. Galatenko, “Two-parameter model of a mode I crack in an elastoplastic body under plane-strain conditions,” Int. Appl. Mech., 41, No. 6, 621–630 (2005).CrossRefGoogle Scholar
  15. 15.
    V. V. Loboda and A. E. Sheveleva, “Determining prefracture zones at a crack tip between two elastic orthotropic bodies,” Int. Appl. Mech., 39, No. 5, 566–572 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. A. Kaminsky
    • 1
  • M. V. Dudik
    • 2
  • L. A. Kipnis
    • 2
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKiev
  2. 2.Pavlo Tychina State Pedagogical UniversityUmanUkraine

Personalised recommendations