Skip to main content
Log in

Three-dimensional theory of stability of a carbon nanotube in a matrix

  • Published:
International Applied Mechanics Aims and scope

Abstract

The three-dimensional theory of stability of a carbon nanotube (CNT) in a polymer matrix is presented. The results are obtained on the basis of the three-dimensional linearized theory of stability of deformable bodies. Flexural and helical (torsional) buckling modes are considered. It is proved that the helical (torsional) buckling modes occur in a single CNT (the interaction of neighboring CNTs is neglected) and do not occur in nanocomposites (the interaction of neighboring CNTs is taken into account)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born and K. Huang, Dynamic Theory of Crystal Lattices, Oxford (1954).

  2. A. N. Guz, “On setting up a stability theory of unidirectional fibrous materials,” Int. Appl. Mech., 5, No. 2, 156–162 (1969).

    MathSciNet  Google Scholar 

  3. A. N. Guz, Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  4. A. N. Guz, Stability of Elastic Bodies under Finite Strains [in Russian], Naukova Dumka, Kiev (1973).

    Google Scholar 

  5. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kiev (1986).

    Google Scholar 

  6. A. N. Guz, Mechanics of Compressive Failure of Composite Materials [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  7. A. N. Guz (editor-in-chief), Mechanics of Composite Materials [in Russian], Vols. 1–4, Naukova Dumka, Kiev (1993), Vols. 5–12, A.S.K., Kiev (2003).

    Google Scholar 

  8. D. W. Brenner, “Empirical potential for hydrocarbons for use in simulating the chemical vapour deposition of diamond films,” Phys. Rev., B.42, 9458–9471 (1990).

    ADS  Google Scholar 

  9. Chunyu Li and Tsu-Wei Chou, “Elastic moduli of multi-walled carbon nanotubes and the effect of Van der Waals forces,” Composit. Sci. Technol., 63, 1517–1524 (2003).

    Article  Google Scholar 

  10. Chunyu Li and Tsu-Wei Chou, “A structural mechanics approach for the analysis of carbon nanotubes,” Int. J. Solid Struct., 40, 2487–2499 (2003).

    Article  Google Scholar 

  11. Chunyu Li and Tsu-Wei Chou, “Modelling of elastic buckling of carbon nanotubes by molecular structural mechanics approach,” Mech. Mater., 36, 1047–1055 (2004).

    Article  Google Scholar 

  12. S. Govindjee and J. L. Sackman, “On the use of continuum mechanics to estimate the properties of nanotubes,” Solid State Communications, 110, 227–230 (1999).

    Article  Google Scholar 

  13. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer-Verlag, Berlin-Heidelberg-New York (1999).

    Google Scholar 

  14. A. N. Guz, “On one two-level model in the mesomechanics of compressive fracture of cracked composites,” Int. Appl. Mech., 39, No. 3, 274–285 (2003).

    Article  MATH  Google Scholar 

  15. A. N. Guz and I. A. Guz, “Mixed plane problems of linearized mechanics of solids: Exact solutions,” Int. Appl. Mech., 40, No. 1, 1–29 (2004).

    Article  MathSciNet  Google Scholar 

  16. A. N. Guz, A. A. Rodger, and I. A. Guz, “Developing a compressive failure theory for nanocomposites,” Int. Appl. Mech., 41, No. 3, 233–255 (2005).

    Article  Google Scholar 

  17. A. N. Guz and J. J. Rushchitsky, “Nanomaterials: On the mechanics of nanomaterials,” Int. Appl. Mech., 39, No. 11, 1271–1293 (2003).

    Article  Google Scholar 

  18. I. A. Guz and J. J. Rushchitsky, “Comparing the evolution characteristics of waves in nonlinearly elastic micro-and nanocomposites with carbon fillers,” Int. Appl. Mech., 40, No. 7, 785–793 (2004).

    Article  Google Scholar 

  19. I. A. Guz and J. J. Rushchitsky, “Theoretical description of a delamination mechanism in fibrous micro-and nanocomposites,” Int. Appl. Mech., 40, No. 10, 1129–1136 (2004).

    Google Scholar 

  20. Hui-Shen Shen, “Postbuckling prediction of double-walled carbon nanotubes under hydrostatic pressure,” Int. J. Solid Struct., 41, 2643–2657 (2004).

    Article  MATH  Google Scholar 

  21. Y. Jin and F. G. Yuan, “Simulation of elastic properties of single-walled carbon nanotubes,” Composit. Sci. Technol., 63, 1507–1511 (2003).

    Article  Google Scholar 

  22. J. J. Liu and X. L. Chen, “Evaluation of effective material properties of carbon nanotube-based composites using a nanoscale representative volume element,” Mech. Mater., 35, 69–81 (2003).

    Article  Google Scholar 

  23. O. Lourie, D. M. Cox, and H. D. Wagner, “Buckling and collapse of embedded carbon nanotubes,” Phys. Rev. Letters, 81, No. 8, 1638–1641 (1998).

    Article  ADS  Google Scholar 

  24. G. M. Odegard, T. S. Gates, L. M. Nicholson, and K. E. Wise, “Equivalent-continuum modelling of nano-structured materials,” Composit. Sci. Technol., 62, 1869–1880 (2002).

    Article  Google Scholar 

  25. E. Saether, S. J. V. Frankland, and R. B. Pipes, “Transverse mechanical properties of single-walled carbon crystals. Part I: Determination of elastic moduli,” Composit. Sci. Technol., 63, 1543–1550 (2003).

    Article  Google Scholar 

  26. Q. Wang, “Effective in plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes,” Int. J. Solid Struct., 41, 5451–5461 (2004).

    Article  MATH  ADS  Google Scholar 

  27. J. Wang and R. Pyrz, “Prediction of the overall moduli of layered silicate-reinforced nanocomposites. Part I: Basic theory and formulas,” Composit. Sci. Technol., 64, 925–934 (2004).

    Article  Google Scholar 

  28. M. A. Wilson, K. Kannangara, G. Smith, M. Simmons, and B. Raguse, Nanotechnology. Basic Science and Emerging Technologies, Chapman & Hall/CRC, Boca Raton-London (2002).

    Google Scholar 

  29. I. R. Xiao, B. A. Gama, and I. W. Gillespie, Jr., “An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes,” Int. J. Solid Struct., 42, 3075–3092 (2005).

    Article  Google Scholar 

  30. B. L. Yakobson, C. I. Brobec, and I. Bernhole, “Nanomechanics of carbon tubes: Instabilities beyond linear response,” Phys. Rev. Letters, 76, 2511–2514 (1996).

    Article  ADS  Google Scholar 

  31. P. Zhang, Y. Jiang, P. H. Geubelbe, and K. C. Hwang, “An atomistic-based continuum theory for carbon nanotubes: analysis of fracture nucleation,” J. Mech. Phys. Solids, 52, 977–998 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 42, No. 1, pp. 23–37, January 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guz, A.N. Three-dimensional theory of stability of a carbon nanotube in a matrix. Int Appl Mech 42, 19–31 (2006). https://doi.org/10.1007/s10778-006-0055-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0055-6

Keywords

Navigation