Advertisement

International Applied Mechanics

, Volume 41, Issue 12, pp 1368–1377 | Cite as

Physical constants for one type of nonlinearly elastic fibrous micro-and nanocomposites with hard and soft nonlinearities

  • C. Cattani
  • J. J. Rushchitsky
  • S. V. Sinchilo
Article

Abstract

Sets of physical constants are tabulated for three structural models of fibrous composites with fibers of four types: Thornel-300 carbon microfibers, graphite whiskers, carbon zigzag nanotubes, and carbon chiral nanotubes. The matrix for all the types of composites is always ÉPON-828 epoxy rosin (in some cases with polystyrene or pyrex additive). The values of the physical constants are commented on and used to study the distinctions in the evolution of three types of waves (plane longitudinal, plane transverse, and cylindrical) propagating in materials with soft and hard nonlinearities

Keywords

hyperelastic materials Murnaghan potential complete sets of elastic constants plane and cylindrical waves hard and soft nonlinearities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Guz (ed.), Mechanics of Composites [in Russian], Naukova Dumka (vols. 1–4), A.S.K. (vols. 5–12), Kiev (1993)–(2003).Google Scholar
  2. 2.
    I. N. Frantsevich and D. M. Karpinos, Fibrous Composite Materials [in Russian], Naukova Dumka, Kiev (1970).Google Scholar
  3. 3.
    A. I. Lurie, Nonlinear Theory of Elasticity [in Russian], Nauka, Moscow (1980).Google Scholar
  4. 4.
    J. J. Rushchitsky, Elements of Mixture Theory [in Russian], Naukova Dumka, Kiev (1991).Google Scholar
  5. 5.
    J. J. Rushchitsky and S. I. Tsurpal, Waves in Microstructural Materials [in Ukrainian], Inst. Mekh. S. P. Timoshenka, Kiev (1998).Google Scholar
  6. 6.
    A. Bedford, G. S. Drumheller, and H. J. Sutherland, “On modeling the dynamics of composite materials,” in: S. Nemat-Nasser, Mechanics Today, Vol. 3, Pergamon Press, New York (1976), pp. 1–54.Google Scholar
  7. 7.
    A. Bedford and G. S. Drumheller, “Theories of immiscible and structured mixtures,” Int. J. Eng. Sci., 21, No. 8, 863–960 (1983).CrossRefMathSciNetGoogle Scholar
  8. 8.
    A. N. Guz and J. J. Rushchitsky, “Nanomaterials: On mechanics of nanomaterials,” Int. Appl. Mech., 39, No. 11, 1271–1293 (2003).CrossRefGoogle Scholar
  9. 9.
    I. A. Guz and J. J. Rushchitsky, “Comparion of mechanical properties and effects in micro-and nanocomposites with carbon fillers (carbon microfibers, graphite microwhiskers, and carbon nanotubes,” Mech. Comp. Mater., 40, No. 3, 179–190 (2004).Google Scholar
  10. 10.
    I. A. Guz and J. J. Rushchitsky, “Comparing the evolution characteristics of waves in nonlinearly elastic micro-and nanocomposites with carbon fillers,” Int. Appl. Mech., 40, No. 7, 785–793 (2004).CrossRefGoogle Scholar
  11. 11.
    I. A. Guz and J. J. Rushchitsky, “Theoretical description of a delamination mechanism in fibrous micro-and nanocomposites,” Int. Appl. Mech., 40, No. 10, 1029–1036 (2004).Google Scholar
  12. 12.
    H. Kauderer, Nichtlineare Mechanik, Springer Verlag, Berlin (1958).Google Scholar
  13. 13.
    B. P. Maslov, J. J. Rushchitsky, and A. P. Kovalenko, “Physical constants of a nonlinear microstructural theory of two-phase elastic mixtures for several granular structural composites,” Int. Appl. Mech., 32, No. 12, 977–984 (1996).CrossRefGoogle Scholar
  14. 14.
    J. J. Rushchitsky, “Interaction of waves in solid mixtures,” Appl. Mech. Rev., 52, No. 2, 35–74 (1999).Google Scholar
  15. 15.
    J. J. Rushchitsky, “Extension of the microstructural theory of two-phase mixtures to composite materials,” Int. Appl. Mech., 36, No. 5, 586–614 (2000).Google Scholar
  16. 16.
    J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Primary analysis of evolution,” Int. Appl. Mech., 41, No. 7, 770–777 (2005).CrossRefGoogle Scholar
  17. 17.
    J. J. Rushchitsky and C. Cattani, “Cubically nonlinear elastic waves: Wave equations and methods of analysis,” Int. Appl. Mech., 39, No. 10, 1115–1145 (2003).MathSciNetGoogle Scholar
  18. 18.
    J. J. Rushchitsky and C. Cattani, “Cubically nonlinear versus quadratically nonlinear elastic waves: Main wave effects,” Int. Appl. Mech., 39, No. 12, 1361–1399 (2003).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • C. Cattani
    • 1
  • J. J. Rushchitsky
    • 2
  • S. V. Sinchilo
    • 2
  1. 1.University of SalernoItaly
  2. 2.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKiev

Personalised recommendations