International Applied Mechanics

, Volume 41, Issue 9, pp 1007–1015 | Cite as

Kinematically Excited Stokes Flow in a Right-Angle Wedge (Plane Problem)

  • A. F. Ulitko


An exact solution is obtained for a Stokes flow in a right-angle wedge. The flow is kinematically excited at the bottom edge and discontinues at the corner point


viscous fluid Stokes flow wedge edge plane problem Mellin transform exact solution stress distribution pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. K. Bachelor, An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge (1970).Google Scholar
  2. 2.
    F. D. Gakhov, Boundary-Value Problems [in Russian], Fizmatgiz, Moscow (1963), Kiev (2002).Google Scholar
  3. 3.
    A. D. Kovalenko, Selected Works [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  4. 4.
    A. I. Lur'e, Theory of Elasticity [in Russian], Nauka, Moscow (1970).Google Scholar
  5. 5.
    B. Noble, Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations, Pergamon Press, London (1958).Google Scholar
  6. 6.
    L. Prandtl, Hydromechanics [Russian translation], RKhD, Moscow-Izhevsk (2002).Google Scholar
  7. 7.
    I. E. Tamm, Fundamentals of the Theory of Electricity [in Russian], Nauka, Moscow (1976).Google Scholar
  8. 8.
    A. F. Ulitko, Vector Expansions in the Three-Dimensional Theory of Elasticity [in Russian], Akademperiodika, Kiev (2002).Google Scholar
  9. 9.
    J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Noordhoff, Leiden, Netherlands (1973).Google Scholar
  10. 10.
    O. P. Chervinko, “Calculating the critical parameters characterizing the thermal instability of a viscoelastic prism with a stress concentrator under harmonic compression,” Int. Appl. Mech., 40, No.8, 916–922 (2004).CrossRefGoogle Scholar
  11. 11.
    J. N. Goodier, “An analogy between the slow motion of a viscous fluid in two dimensions, and systems of plane stress,” Phil. Mag. (Ser. 7), 17, 800–803 (1934).MATHGoogle Scholar
  12. 12.
    V. G. Karnaukhov, “Thermal failure of polymeric structural elements under monoharmonic deformation,” Int. Appl. Mech., 40, No.6, 622–655 (2004).CrossRefMathSciNetGoogle Scholar
  13. 13.
    I. K. Senchenkov, Ya. A. Zhuk, V. G. Karnaukhov, “Modeling the thermomechanical behavior of physically nonlinear materials under monoharmonic loading,” Int. Appl. Mech. 40, No.9, 943–969 (2004).CrossRefGoogle Scholar
  14. 14.
    G. I. Taylor, “Onscrapping viscous fluid from a plane surface,” in: M. Schafer (ed.), Miszellangen der angewandten Mechanik, Akademie-Verlag, Berlin (1962), pp. 313–315.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. F. Ulitko
    • 1
  1. 1.T. Shevchenko Kiev National UniversityKievUkraine

Personalised recommendations