Advertisement

Thermal Effects in a Physically Nonlinear Cylinder under Impulsive Loading

  • I. K. Senchenkov
  • N. F. Andrushko
Article

Abstract

A coupled dynamic problem of thermomechanics is formulated based on a thermodynamically consistent modification of the Bodner-Partom model. This formulation is used to analyze the thermomechanical state of an aluminum cylinder under axial impulsive loading. The problem is solved by the finite-element method. Time integration is performed by the Crank-Nicholson scheme. Reversible and irreversible thermal changes are studied

Keywords

thermomechanical coupling finite element physically nonlinear cylinder impulsive loading 

REFERENCES

  1. 1.
    A. P. Bol'shakov, S. A. Novikov, and V. A. Sinitsyn, “Analysis of dynamic diagrams of uniaxial tension and compression for copper and AMg-6 alloy,” Probl. Prochn., No. 10, 87–88 (1979).Google Scholar
  2. 2.
    Ya. A. Zhuk, I. K. Senchenkov, V. I. Kozlov, and G. A. Tabieva, “Axisymmetric dynamic problem of coupled thermoviscoplasticity,” Int. Appl. Mech., 37, No.10, 1311–1317 (2001).CrossRefGoogle Scholar
  3. 3.
    I. A. Motovilovets and V. I. Kozlov, Thermoelasticity, Vol. 1 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kiev (1987).Google Scholar
  4. 4.
    A. M. Rajendran, S. J. Bless, and D. S. Dawicke, “Evaluation of Bodner-Partom model parameters at high strain rate,” J. Eng. Mater. Technol., 108, 75–80 (1986).CrossRefGoogle Scholar
  5. 5.
    I. K. Senchenkov and Ya. A. Zhuk, “Thermodynamic analysis of one thermoviscoplastic model,” Prikl. Mekh., 33, No.2, 41–48 (1997).Google Scholar
  6. 6.
    G. B. Talypov, Plasticity and Strength of Steel under Complex Loading [in Russian], Izd. LGU, Leningrad (1968).Google Scholar
  7. 7.
    S. R. Bodner, Unified Plasticity. An Engineering Approach, Inst. Techn., Haifa (2000).Google Scholar
  8. 8.
    S. R. Bodner and A. Lindenfeld, “Constitutive modelling of the stored energy of cold work under cyclic loading,” Eur. J. Mech. A/Solids, 14, No.3, 333–348 (1995).MATHGoogle Scholar
  9. 9.
    S. R. Bodner and P. S. Symonds, “Experiments on viscoplastic response of circular plates to impulsive loading,” J. Mech. Phys. Solids, 27, 91–113 (1979).ADSGoogle Scholar
  10. 10.
    A. Chrysochoos, “The heat evolved during an elastic-plastic tranformation at finite strain,” in: IUTAM, Termomechanical Couplings in Solids, North-Holland (1987), pp. 79–84.Google Scholar
  11. 11.
    I. K. Senchenkov, Ya. A. Zhuk, and V. G. Karnaukhov, “Modeling the thermomechanical behavior of physically nonlinear materials under monoharmonic loading,” Int. Appl. Mech., 40, No.9, 943–969 (2004).CrossRefGoogle Scholar
  12. 12.
    Yu. N. Shevchenko and V. V. Piskun, “Axisymmetric thermoelastoplastic stress state of isotropic solids of revolution under impulsive loading,” Int. Appl. Mech., 39, No.5, 546–555 (2003).CrossRefGoogle Scholar
  13. 13.
    M. Stoffer, R. Schmidt, and D. Weichert, “Shock wave-loaded plates,” Int. J. Solids Struct., 38, 7659–7680 (2001).Google Scholar
  14. 14.
    Ya. A. Zhuk and I. K. Senchenkov, “Modeling the stationary vibrations and dissipative heating of thin-walled inelastic elements with piezoactive layers,” Int. Appl. Mech., 40, No.5, 546–556 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • I. K. Senchenkov
    • 1
  • N. F. Andrushko
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations