International Applied Mechanics

, Volume 41, Issue 6, pp 697–703 | Cite as

Stability Conditions for Linear Impulsive Systems with Delay

  • V. I. Slyn'ko


Sufficient asymptotic-stability conditions for a linear impulsive system with delay are established on the basis of Lyapunov—Razumikhin functions. A scalar equation is considered as an example


impulsive system with delay Lyapunov—Razumikhin functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. V. Azbelev and P. M. Simonov, Stability of Functional Differential Equations with Aftereffect [in Russian], Perm. Gos. Tekhn. Univ., Perm' (1994).Google Scholar
  2. 2.
    R. I. Gladilina and A. O. Ignat'ev, “Stability of invariant sets of impulsive systems of differential equations,” in: Abstr. 10th Int. Sci. M. Kravchuk Conf. [in Russian], Kiev (2004).Google Scholar
  3. 3.
    R. I. Gladilina and A. O. Ignat'ev, “Existence of the Lyapunov functions for nonlinear systems with impulsive action,” in: Abstracts 7th Crimean Int. Math. School “Method of Lyapunov Functions and Its Applications,” [in Russian], Alushta (2004).Google Scholar
  4. 4.
    Lj. T. Grujic, A. A. Martynyuk, and M. Ribbens-Pavella, Stability of Large-Scale Systems under Structural and Singular Perturbations [in Russian], Naukova Dumka, Kiev (1984).Google Scholar
  5. 5.
    Yu. L. Daletskii and M. G. Krein, Stability of the Solutions of Differential Equations in the Banach Space [in Russian], Nauka, Moscow (1970).Google Scholar
  6. 6.
    A. I. Dvirnyi and V. I. Slyn'ko, “Stability of linear impulsive systems relative to a cone,” Dop. NAN Ukrainy, No. 4, 42–48 (2004).Google Scholar
  7. 7.
    V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Stability of Motion: Comparison Method [in Russian], Naukova Dumka, Kiev (1991).Google Scholar
  8. 8.
    A. Yu. Obolenskii, Asymptotical Behavior of Dynamic Systems with a Cone [in Russian], Manuscript No. 7504-v86 dep. at VINITI 18.09.86, Moscow (1986).Google Scholar
  9. 9.
    B. S. Razumikhin, “Stability of systems with delay,” Prikl. Mat. Mekh., 20, 500–512 (1956).Google Scholar
  10. 10.
    N. Rouche, P. Habets, and M. Laloy, Stability Theory by Liapunov's Direct Method, Springer-Verlag, New York (1977).Google Scholar
  11. 11.
    R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge (1985).Google Scholar
  12. 12.
    A. I. Dvirnyi and V. I. Slyn'ko, “Stability criteria for quasilinear impulsive systems,” Int. Appl. Mech., 40, No.5, 592–599 (2004).CrossRefGoogle Scholar
  13. 13.
    A. A. Martynyuk, J. N. Shen, and I. P. Stavroulakis, “Stability theorems in impulsive equations with infinite delay,” in: Advances in Stability Theory at the End of the 20th Century, Taylor and Francis, London-New York (2003), pp. 153–175.Google Scholar
  14. 14.
    A. A. Martynyuk and V. I. Slyn'ko, “Stability of a nonlinear impulsive system,” Int. Appl. Mech., 40, No.2, 231–239 (2004).CrossRefGoogle Scholar
  15. 15.
    A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).Google Scholar
  16. 16.
    V. I. Slyn'ko, “Sufficient practical-stability conditions for nonlinear impulsive systems” Int. Appl. Mech., 40, No.10, 1171–1174 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. I. Slyn'ko
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations