International Applied Mechanics

, Volume 41, Issue 3, pp 233–255 | Cite as

Developing a Compressive Failure Theory for Nanocomposites

  • A. N. Guz
  • A. A. Rodger
  • I. A. Guz


The paper addresses a compressive-failure theory for polymer-matrix nanocomposites in the case where failure onset is due to microbuckling. Two approaches based on the three-dimensional linearized theory of stability of deformable bodies are applied to laminated and fibrous nanocomposites. According to the first approach (continuum compressive-failure theory), nanocomposites are modeled by a homogeneous anisotropic medium with effective constants, including microstructural parameters. The second approach uses the piecewise-homogeneous model, three-dimensional relations for fibers (CNT) and matrix, and continuity conditions at the fiber-matrix interface. The compressive-failure theory is used to solve specific problems for laminated and fibrous nanocomposites. Some approximate failure theories based on the one- and two-dimensional applied theories of stability of rods, plates, and shells are analyzed


nanocomposites CNT fiber polymer matrix compressive failure microbuckling three-dimensional linearized theory of stability of deformable bodies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Van Fo Fy, Theory of Reinforced Materials [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  2. 2.
    A. N. Guz, “Determination of theoretical ultimate compressive strength for reinforced materials,” Dokl. AN USSR, Ser. A, No. 3, 236–238 (1969).Google Scholar
  3. 3.
    A. N. Guz, “Developing a stability theory for unidirectional fibrous materials,” Prikl. Mekh., 5, No.2, 62–70 (1969).Google Scholar
  4. 4.
    A. N. Guz, Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  5. 5.
    A. N. Guz, “Brittle fracture criteria for compressed materials with imperfections,” Dokl. AN SSSR, 285, No.4, 828–831 (1985).Google Scholar
  6. 6.
    A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kiev (1986).Google Scholar
  7. 7.
    A. N. Guz, Fracture Mechanics of Compressed Composites [in Russian], Naukova Dumka, Kiev (1990).Google Scholar
  8. 8.
    A. N. Guz, “Description and study of some nonclassical problems of fracture mechanics and related mechanisms,” Int. Appl. Mech., 36, No.12, 1537–1564 (2000).Google Scholar
  9. 9.
    I. A. Guz, “Stability of a composite compressed along an interfacial crack,” Dokl. AN SSSR, 325, No.3, 455–458 (1992).Google Scholar
  10. 10.
    I. A. Guz, “Stability of a composite compressed along two interfacial macrocracks,” Dokl. AN SSSR, 328, No.4, 437–439 (1993).Google Scholar
  11. 11.
    I. A. Guz, “Investigation of the stability of a composite in compression along two parallel structural cracks at the layer interfaces,” Int. Appl. Mech., 30, No.11, 841–847 (1994).Google Scholar
  12. 12.
    I. A. Guz, “Problems of the stability of composite materials in compression along interlaminar cracks: Periodic system of parallel macrocracks,” Int. Appl. Mech., 31, No.7, 551–557 (1995).Google Scholar
  13. 13.
    H. Liebowitz (ed.), Fracture: An Advanced Treatise, Vols. 1–7, Acad. Press, New York-London (1968–1972).Google Scholar
  14. 14.
    B. W. Rosen, “Mechanics of composite strengthening,” in: Fiber Composite Materials, American Society of Metals, Metals Park, Ohio (1965), pp. 37–75.Google Scholar
  15. 15.
    G. P. Cherepanov, Fracture Mechanics of Composite Materials [in Russian], Nauka, Moscow (1983).Google Scholar
  16. 16.
    C. F. Cornwell and L. T. Wille, “Elastic properties of single-walled carbon nanotubes in compression, ” Solid State Commun., 101, 555–558 (1997).Google Scholar
  17. 17.
    N. F. Dow and I. J. Gruntfest, “Determination of most needed potentially possible improvements in materials for ballistic and space vehicles,” General Electric Co., Space Sci. Lab., TISR 60 SD 389, June (1960).Google Scholar
  18. 18.
    C. Goze, L. Vaccarini, L. Henrard, P. Bernier, E. Hernandez, and A. Rubio, “Elastic and mechanical properties of carbon nanotubes,” Synth. Met., 103, 2500–2501 (1999).Google Scholar
  19. 19.
    A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer-Verlag, Berlin-Heidelberg-New York (1999).Google Scholar
  20. 20.
    A. N. Guz, “On one two-level model in the mesomechanics of compression fracture of cracked composites, ” Int. Appl. Mech., 39, No,3, 274–285 (2003).Google Scholar
  21. 21.
    A. N. Guz and I. A. Guz, “Analytical solution of stability problem for two composite half-planes compressed along interfacial cracks,” Composites, Part B, 31, No.5, 403–418 (2000).Google Scholar
  22. 22.
    A. N. Guz and I. A. Guz, “Mixed plane problems of linearized mechanics of solids: Exact solutions, ” Int. Appl. Mech., 40, No.1, 1–29 (2004).Google Scholar
  23. 23.
    A. N. Guz and J. J. Rushchitsky, “Nanomaterials: On mechanics of nanomaterials,” Int. Appl. Mech., 39, No.11, 1264–1298 (2003).Google Scholar
  24. 24.
    I. A. Guz, “Computer-aided investigations of composites with various interlaminar cracks,” ZAMM, 76,Suppl. No. 5, 189–190 (1996).Google Scholar
  25. 25.
    T. Halicioglu, “Stress calculations for carbon nanotubes,” Thin Solid Films, 312, 11–14 (1998).Google Scholar
  26. 26.
    E. Hermandez, C. Goze, P. Bernier, and A. Rubio, “Elastic properties of C and BxCyNz composite nanotubes,” Phys. Rev. Lett., 80, 4502–4505 (1998).Google Scholar
  27. 27.
    E. Hermandez, C. Goze, P. Bernier, and A. Rubio, “Elastic properties of single-wall nanotubes,” Appl. Phys., A68, 287–292 (1999).Google Scholar
  28. 28.
    A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, “Young’s modulus of single-walled nanotubes,” Phys. Rev., B58, 14013–14019 (1998).Google Scholar
  29. 29.
    G. V. Lier, C. V. Alsenoy, V. V. Doran, and P. Geerlings, “Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene,” Chem. Phys. Lett., 326, 181–185 (2000).Google Scholar
  30. 30.
    K. M. Liew, X. Q. He, and C. H. Wong, “On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation,” Acta Mater., 52, 2521–2527 (2004).Google Scholar
  31. 31.
    O. Lourie, D. M. Cox, and H. D. Wagner, “Buckling and collapse of embedded carbon nanotubes,” Phys. Rev. Lett., 81, No.8, 1638–1641 (1998).Google Scholar
  32. 32.
    O. Lourie and H. D. Wagner, “Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy,” J. Mater. Res., 13, 2418–2422 (1998).Google Scholar
  33. 33.
    J. P. Lu, “Elastic properties of carbon nanotubes and nanoropes,” Phys. Rev. Lett., 79, 1297–1300 (1997).Google Scholar
  34. 34.
    J. M. Molina, S. S. Savinsky, and N. V. Khokhriakov, “A tight-binding model for calculation of structures and properties of graphitic nanotubes,” J. Chem. Phys., 104, 4652–4556 (1996).Google Scholar
  35. 35.
    J. Muster, M. Burghard, S. Roth, G. S. Duesberg, E. Hemander, and A. Rubio, “Scanning force microscopy characterization of individual carbon nanotubes on electrode arrays,” J. Vac. Sci. Technol., B16, 2796–2801 (1998).Google Scholar
  36. 36.
    G. Overney, W. Zhong, and D. Tomanek, “Structural rigidity and low-frequency vibrational models of long carbon tubules,” Z. Phys., D: Atoms Mol. Clusters, 27, 93–96 (1993).Google Scholar
  37. 37.
    Z. W. Pan, S. S. Xie, L. Lu, B. H. Chang, L. F. Sun, W. Y. Zhou, and G. Wang, “Tensile test of ropes of very long aligned multiwall carbon nanotubes,” Appl. Phys. Lett., 74, 3152–3154 (1999).Google Scholar
  38. 38.
    A. Pantano, D. M. Parks, and M. C. Boyce, “Mechanics of deformation of single-and multi-wall carbon nanotubes,” J. Mech. Phys. Solids, 52, 789–821 (2004).Google Scholar
  39. 39.
    V. N. Popov, V. E. Van Doren, and M. Balkanski, “Elastic properties of single-walled carbon nanotubes,” Phys. Rev., B61, 3078–3084 (2000).Google Scholar
  40. 40.
    Y. I. Prylutskyy, S. S. Durov, O. V. Ogloblya, E. V. Buraneva, and P. Scharff, “Molecular dynamics simulations of mechanical, vibrational and electronic properties of carbon nanotubes,” Comput. Mater. Sci., 17, 352–355 (2000).Google Scholar
  41. 41.
    D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu, and R. S. Ruoff, “Mechanics of carbon nanotubes,” Appl. Mech. Rev., 55, 495–530 (2002).Google Scholar
  42. 42.
    D. H. Robertson, D. W. Brenner, and J. W. Mintmire, “Energetics and nanoscale graphitic tubules,” Phys. Rev., B45, 12592–12595 (1992).Google Scholar
  43. 43.
    J. P. Salventat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, and A. J. Kulik, “Elastic and shear moduli of single-walled carbon nanotube ropes,” Phys. Rev. Lett., 82, 944–947 (1999).Google Scholar
  44. 44.
    D. Sanchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordejon, “Ab initio structural, elastic and vibrational properties of carbon nanotubes,” Phys. Rev., B59, 12678–12688 (1999).Google Scholar
  45. 45.
    H. Schuerch, Boron Filament Composite Materials for Space Structures, Pt. 1: Compressive Strength of Boron Metal Composite, Rep. No. ARC-R-168, Astro Research Corp., Santa Barbara (Ca) (1964).Google Scholar
  46. 46.
    H. Schuerch, “Prediction of compressive strength in uniaxial Boron fibermetal composite materials,” AIAA J., 4, No.1, 102–106 (1966).Google Scholar
  47. 47.
    D. Srivastava, Ch. Wei, and K. Cho, “Nanomechanics of carbon nanotubes and composites,” Appl. Mech. Rev., 56, 215–229 (2003).Google Scholar
  48. 48.
    T. W. Tombler, C. Zhou, L. Alezseyev, J. Eong, H. L. Dai, C. S. Jaganthi, M. Tang, and S. Y. Wu, “ Reversible electromechanical characterictics of carbon nanotubes under local-probe manipulation,” Nature, 405, 769–772 (2000).Google Scholar
  49. 49.
    M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young’s modulus observed for individual carbon nanotubes,” Nature, 381, 678–680 (1996).Google Scholar
  50. 50.
    L. Vaccarini, C. Goze, L. Henrard, E. Hermandez, P. Bernier, and A. Rubio, “Mechanical and electronic properties of carbon and boron-nitride nanotubes,” Carbon, 38, 1681–1690 (2000).Google Scholar
  51. 51.
    E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes,” Science, 277, 1971–1975 (1997).Google Scholar
  52. 52.
    B. L. Yakobson, C. J. Brabec, and J. Bernhole, “Nanomechanics of carbon tubes: instabilities beyond linear response,” Phys. Rev. Lett., 76, 2511–2514 (1996).Google Scholar
  53. 53.
    M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile,” Science, 287, 454–458 (2000).Google Scholar
  54. 54.
    P. Zhang, H. Jiang, Y. Huang, P. H. Geubelle, and K. C. Hwang, “An atomistic-based continuum theory for carbon nanotubes: analysis of fracture nucleation,” J. Mech. Phys. Solids, 52, 977–998 (2004).Google Scholar
  55. 55.
    G. Zhou, W. Duan, and B. Gu, “First-principles study on morphology and mechanical properties of single-walled carbon nanotubes,” Chem. Phys. Lett., 333, 344–349 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. N. Guz
    • 1
  • A. A. Rodger
    • 2
  • I. A. Guz
    • 2
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKievUkraine
  2. 2.University of AberdeenScotland

Personalised recommendations