Advertisement

An Efficient Multi-carrier Resource Allocation with User Discrimination Framework for 5G Wireless Systems

  • Haya Shajaiah
  • Ahmed Abdelhadi
  • Charles Clancy
Article

Abstract

In this paper, we present an efficient resource allocation with user discrimination framework for 5G Wireless Systems to allocate multiple carriers resources among users with elastic and inelastic traffic. Each application running on the user equipment (UE) is assigned an application utility function. In the proposed model, different classes of user groups are considered and users are partitioned into different groups based on the carriers coverage area. Each user has a minimum required application rate based on its class and the type of its application. Our objective is to allocate multiple carriers resources optimally among users, that belong to different classes, located within the carriers’ coverage area. We use a utility proportional fairness approach in the utility percentage of the application running on the UE. Each user is guaranteed a minimum quality of service with a priority criterion that is based on user’s class and the type of application running on the UE. In addition, we prove the existence of optimal solutions for the proposed resource allocation optimization problem and present a multi-carrier resource allocation with user discrimination algorithm. Finally, we present simulation results for the performance of the proposed algorithm.

Keywords

Multi-carrier resource allocation User discrimination Utility proportional fairness Minimum required application rate 

References

  1. 1.
    H. Ekstrom, “QoS control in the 3GPP evolved packet system,” Communications Magazine, IEEE, vol. 47, pp. 76 –83, February 2009.Google Scholar
  2. 2.
    Cisco, Visual Networking Index. White paper at Cisco.com, Feb. 2014.Google Scholar
  3. 3.
    M. Iwamura, K. Etemad, M.-H. Fong, R. Nory, and R. Love, “Carrier aggregation framework in 3GPP LTE-advanced [WiMAX/LTE Update],” IEEE Communications Magazine, vol. 48, no. 8, pp. 60–67, 2010.Google Scholar
  4. 4.
    Y. Wang, K. I. Pedersen, T. B. Sørensen, and P. E. Mogensen, “Utility Maximization in LTE-Advanced Systems with Carrier Aggregation,” in VTC Spring, pp. 1–5, 2011.Google Scholar
  5. 5.
    A. Biral, M. Centenaro, A. Zanella, L. Vangelista, and M. Zorzi, “The challenges of M2M massive access in wireless cellular networks,” Digital Communications and Networks, vol. 1, no. 1, pp. 1–19, 2015.Google Scholar
  6. 6.
    M. Corson, R. Laroia, J. Li, V. Park, T. Richardson, and G. Tsirtsis, “Toward proximity-aware internetworking,” Wireless Communications, IEEE, vol. 17, pp. 26–33, December 2010.Google Scholar
  7. 7.
    M. Iwamura, K. Etemad, M.-H. Fong, R. Nory, and R. Love, “Carrier aggregation framework in 3GPP LTE-advanced [WiMAX/LTE Update],” Communications Magazine, IEEE, vol. 48, pp. 60–67, August 2010.Google Scholar
  8. 8.
    G. RP-091440, “Work Item Description: CarrierAggregation for LTE,” December 2009.Google Scholar
  9. 9.
    H. Shajaiah, A. Abdel-Hadi, and C. Clancy, “Utility Proportional Fairness Resource Allocation with Carrier Aggregation in 4G-LTE,” in Military Communications Conference, MILCOM 2013 - 2013 IEEE, pp. 412–417, Nov 2013.Google Scholar
  10. 10.
    H. Shajaiah, A. Khawar, A. Abdel-Hadi, and T. Clancy, “Resource allocation with carrier aggregation in LTE Advanced cellular system sharing spectrum with S-band radar,” in Dynamic Spectrum Access Networks (DYSPAN), 2014 IEEE International Symposium on, pp. 34–37, April 2014.Google Scholar
  11. 11.
    H. Shajaiah, A. Abdelhadi, and T. C. Clancy, “A price selective centralized algorithm for resource allocation with carrier aggregation in LTE cellular networks,” arXiv:1408.4151, Accepted in WCNC, 2015.
  12. 12.
    H. Shajaiah, A. Abdel-Hadi, and C. Clancy, “Spectrum sharing between public safety and commercial users in 4G-LTE,” in Computing, Networking and Communications (ICNC), 2014 International Conference on, pp. 674–679, Feb 2014.Google Scholar
  13. 13.
    H. Shajaiah, A. Abdelhadi, and C. Clancy, “Multi-Application Resource Allocation with Users Discrimination in Cellular Networks,” in PIMRC, 2014.Google Scholar
  14. 14.
    A. Abdel-Hadi and C. Clancy, “A utility proportional fairness approach for resource allocation in 4G-LTE,” in Computing, Networking and Communications (ICNC), 2014 International Conference on, pp. 1034–1040, Feb 2014.Google Scholar
  15. 15.
    F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks: shadow prices, proportional fairness and stability,” in Journal of the Operational Research Society, vol. 49, 1998.Google Scholar
  16. 16.
    S. Low, F. Paganini, and J. Doyle, “Internet congestion control,” Control Systems, IEEE, vol. 22, pp. 28–43, Feb 2002.Google Scholar
  17. 17.
    S. Low and D. Lapsley, “Optimization flow control. i. basic algorithm and convergence,” Networking, IEEE/ACM Transactions on, vol. 7, pp. 861–874, Dec 1999.Google Scholar
  18. 18.
    J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” Networking, IEEE/ACM Transactions on, vol. 8, pp. 556–567, Oct 2000.Google Scholar
  19. 19.
    S. Shenker, “Fundamental design issues for the future internet,” Selected Areas in Communications, IEEE Journal on, vol. 13, pp. 1176–1188, Sept 1995.Google Scholar
  20. 20.
    Z. Cao and E. Zegura, “Utility max-min: an application-oriented bandwidth allocation scheme,” in INFOCOM ’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 2, pp. 793–801 vol.2, Mar 1999.Google Scholar
  21. 21.
    S. Sarkar and L. Tassiulas, “Fair allocation of utilities in multirate multicast networks: a framework for unifying diverse fairness objectives,” Automatic Control, IEEE Transactions on, vol. 47, pp. 931–944, Jun 2002.Google Scholar
  22. 22.
    A. Abdel-Hadi and C. Clancy, “A robust optimal rate allocation algorithm and pricing policy for hybrid traffic in 4G-LTE,” in Personal Indoor and Mobile Radio Communications (PIMRC), 2013 IEEE 24th International Symposium on, pp. 2185–2190, Sept 2013.Google Scholar
  23. 23.
    A. Abdel-Hadi, C. Clancy, and J. Mitola, “A Resource Allocation Algorithm for Multi-Application Users in 4G-LTE,” in MobiCom Workshop, 2013.Google Scholar
  24. 24.
    M. Ghorbanzadeh, A. Abdelhadi, and C. Clancy, “A utility proportional fairness radio resource block allocation in cellular networks,” arXiv:1406.2630v1.
  25. 25.
    T. Erpek, A. Abdelhadi, and T. C. Clancy, “An optimal application-aware resource block scheduling in LTE,” arXiv:1405.7446v1.
  26. 26.
    M. Awad, V. Mahinthan, M. Mehrjoo, X. Shen, and J. W. Mark, “A Dual-Decomposition-Based Resource Allocation for OFDMA Networks With Imperfect CSI,” Vehicular Technology, IEEE Transactions on, vol. 59, pp. 2394–2403, Jun 2010.Google Scholar
  27. 27.
    M. Mehrjoo, S. Moazeni, and X. S. Shen, “Resource allocation in OFDMA networks based on interior point methods,” Wireless Communications and Mobile Computing, vol. 10, no. 11, pp. 1493–1508, 2010.Google Scholar
  28. 28.
    P. Tejera, W. Utschick, J. Nossek, and G. Bauch, “Rate Balancing in Multiuser MIMO OFDM Systems,” Communications, IEEE Transactions on, vol. 57, pp. 1370–1380, May 2009.Google Scholar
  29. 29.
    L. Xu, X. Shen, and J. W. Mark, “Fair resource allocation with guaranteed statistical QoS for multimedia traffic in wideband CDMA cellular network,” Mobile Computing, IEEE Transactions on, vol. 4, pp. 166–177, March 2005.Google Scholar
  30. 30.
    M. Mehrjoo, M. Awad, M. Dianati, and X. Shen, “Design of fair weights for heterogeneous traffic scheduling in multichannel wireless networks,” Communications, IEEE Transactions on, vol. 58, pp. 2892–2902, October 2010.Google Scholar
  31. 31.
    R. Madan, S. Boyd, and S. Lall, “Fast algorithms for resource allocation in wireless cellular networks,” Networking, IEEE/ACM Transactions on, vol. 18, pp. 973–984, June 2010.Google Scholar
  32. 32.
    Y.-B. Lin, T.-H. Chiu, and Y.-T. Su, “Optimal and near-optimal resource allocation algorithms for OFDMA networks,” Wireless Communications, IEEE Transactions on, vol. 8, pp. 4066–4077, August 2009.Google Scholar
  33. 33.
    G. Li and H. Liu, “Downlink dynamic resource allocation for multi-cell OFDMA system,” in Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on, vol. 1, pp. 517–521 Vol.1, Nov 2003.Google Scholar
  34. 34.
    S. Cicalo, V. Tralli, and A. Perez-Neira, “Centralized vs Distributed Resource Allocation in Multi-Cell OFDMA Systems,” in Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd, pp. 1–6, May 2011.Google Scholar
  35. 35.
    M. Dianati, X. Shen, and K. Naik, “Cooperative Fair Scheduling for the Downlink of CDMA Cellular Networks,” Vehicular Technology, IEEE Transactions on, vol. 56, pp. 1749–1760, July 2007.Google Scholar
  36. 36.
    P.-L. Tsai, K.-J. Lin, and W.-T. Chen, “Downlink radio resource allocation with Carrier Aggregation in MIMO LTE-advanced systems,” in Communications (ICC), 2014 IEEE International Conference on, pp. 2332–2337, June 2014.Google Scholar
  37. 37.
    J.-W. Lee, R. Mazumdar, and N. Shroff, “Downlink power allocation for multi-class wireless systems,” Networking, IEEE/ACM Transactions on, vol. 13, pp. 854–867, Aug 2005.Google Scholar
  38. 38.
    S. Shenker, “Fundamental design issues for the future internet,” Selected Areas in Communications, IEEE Journal on, vol. 13, no. 7, pp. 1176–1188, 1995.Google Scholar
  39. 39.
    G. Tychogiorgos, A. Gkelias, and K. K. Leung, “Utility-proportional fairness in wireless networks,” in Personal Indoor and Mobile Radio Communications (PIMRC), 2012 IEEE 23rd International Symposium on, pp. 839–844, Sept 2012.Google Scholar
  40. 40.
    S. Boyd and L. Vandenberghe, Introduction to convex optimization with engineering applications. Course Reader, 2001.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Haya Shajaiah
    • 1
  • Ahmed Abdelhadi
    • 1
  • Charles Clancy
    • 1
  1. 1.Hume Center for National Security and TechnologyVirginia TechArlingtonUSA

Personalised recommendations