Channel Models for Medical Implant Communication

  • Kamran Sayrafian-Pour
  • Wen-Bin Yang
  • John Hagedorn
  • Judith Terrill
  • Kamya Yekeh Yazdandoost
  • Kiyoshi Hamaguchi


Information regarding the propagation media is typically gathered by conducting physical experiments, measuring and processing the corresponding data to obtain channel characteristics. When this propagation media is human body, for example in case of medical implants, then this approach might not be practical. In this paper, an immersive visualization environment is presented, which is used as a scientific instrument that gives us the ability to observe RF propagation from medical implants inside a human body. This virtual environment allows for more natural interaction between experts with different backgrounds, such as engineering and medical sciences. Here, we show how this platform has been used to determine channel models for medical implant communication systems.


Channel model Implant communication system Immersive visualization system Body area networks 



The authors would like to thank Mr. Steven Satterfield from the high performance computing and visualization group of the Applied and Computational Mathematics Division, ITL, for his assistance in the system setup and his ongoing contribution in the development of tools for the NIST immersive visualization system.


  1. 1.
    B. Chi, J. Yao, S. Han, X. Xie, G. Li, and Z. Wang, Lowpower transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications, IEEE Transaction Biomedical Engineering, Vol. 54, No. 7, pp. 1291–1299, 2007.CrossRefGoogle Scholar
  2. 2.
    E. H. Sarraf, G. K. Wong, and K. Takahata, Frequency-selectable wireless actuation of hydrogel using micromachined resonant heaters toward implantable drug delivery applications. Solid-State Sensors, Actuators and Microsystems Conference, pp. 1525–1528. Denver, CO, USA, 21–25 June 2009.Google Scholar
  3. 3.
    K. H. Shin, C. Y. Moon, T. H. Lee, C. H. Lim, and Y. J. Kim, Implantable flexible wireless pressure sensor module, Sensors, 2004, Proceedings of IEEE Solid-State Sensors, Actuators and Microsystems Conference, Vol. 2, pp. 844–847. Seoul, Korea, 2004.Google Scholar
  4. 4.
    H. Fassbender, W. Mokwa, M. Gortz, K. Trieu, U. Urban, T. Schmitz-Rode, T. Gottsche, and P. Osypka, Fully implantable blood pressure sensor for hypertonic patients. IEEE Solid-State Sensors, Actuators and Microsystems Conference, pp. 1226–1229. IEEE, Piscataway, NJ, 2008.Google Scholar
  5. 5.
    J. L. Bohorquez, A. P. Chandrakasan, and J. L. Dawson, A 350 uW CMOS MSK Transmitter and 400 uW OOK super-regenerative receiver for medical implant communications, IEEE Journal of Solid-State Circuits, Vol. 44, No. 4, pp. 1248–1259, 2009.CrossRefGoogle Scholar
  6. 6.
    J. Kwong, Y. K. Ramadass, N. Verma, and A. Chandrakasan, A 65 nm Sub-Vt microcontroller with integrated SRAM and switched capacitor DC-DC converter, IEEE Journal of Solid-State Circuits, Vol. 44, No. 1, pp. 115–126, 2009.CrossRefGoogle Scholar
  7. 7.
    G. Yang, Body Sensor Networks, SpringerLondon, 2006. ISBN 1-84628-272-1.CrossRefGoogle Scholar
  8. 8.
    W. Yang, K. Sayrafian-Pour, J. Hagedorn, J. Terrill, and K. Y. Yazdandoost, Simulation study of body surface RF propagation for UWB wearable medical sensors. Proceedings of the 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies, ISABEL, 2009.Google Scholar
  9. 9.
    J. G. Hagedorn, J. P. Dunkers, S. G. Satterfield, A. P. Peskin, J. T. Kelso, and J. E. Terrill, Measurement tools for the immersive visualization environment: steps toward the virtual laboratory. Journal of Research of the National Institute of Standard and Technology, Vol. 112, No. 5, pp. 257–270, 2007.Google Scholar
  10. 10.
    C. A. Balanis, Antenna Theory, Analysis and Design, vol. 2nd, John Wiley & Sons Inc.New York, 1997.Google Scholar
  11. 11.
    C. Polk and E. Postow, Biological Effects of Electromagnetic Fields, CRC Press, Inc.Boca Raton, 1996. ISBN 0-8493-0641-8.Google Scholar
  12. 12.
    G. S. Smith, A theoretical and experimental study of the insulated loop antenna in a dissipative medium, Radio Science, Vol. 8, pp. 711–725, 1973.CrossRefGoogle Scholar
  13. 13.
    K. Y. Yazdandoost and R. Kohno, An antenna for medical implant communication systems. Proceedings of the 37th European Microwave Conference, Munich, Germany. Oct. 2007Google Scholar
  14. 14.
    K. Y. Yazdandoost and R. Kohno, Body implanted medical device communications. IEICE Transactions on Communications, Vol. E92-B, No. 2, pp. 2741–2749, 2009.Google Scholar
  15. 15.
    P. S. Hall and Y. Hao, Antennas and Propagation for Body Centric Wireless Communications, Artech House, Inc.Norwood, MA, 2006. ISBN 1-58053-493-7.Google Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA)  2010

Authors and Affiliations

  • Kamran Sayrafian-Pour
    • 1
  • Wen-Bin Yang
    • 1
  • John Hagedorn
    • 1
  • Judith Terrill
    • 1
  • Kamya Yekeh Yazdandoost
    • 2
  • Kiyoshi Hamaguchi
    • 2
  1. 1.Information Technology LaboratoryNational Institute of Standards and Technology (NIST)GaithersburgUSA
  2. 2.National Institute of Information and Communications Technology (NICT)YokosukaJapan

Personalised recommendations