Non-coherent UWB Radio for Low-rate WPAN Applications: A Chaotic Approach



The requirements of low cost, low power and longer operation range for low-rate wireless personal area network (LR-WPAN) applications has driven the utilization of non linear communication approach. In this paper, a combined ultra-wideband (UWB) and chaotic communication technologies is proposed to meet these challenging demands. Among the candidates, the differential chaos shift keying (DCSK) modulation appears to be a very promising solution. The DCSK is a family of transmit reference (TR) system where a correlator based receiver is used to demodulate the received signal. However, this is not very well understood in the literature and therefore we will exemplify this issue in terms of noise performance. Furthermore, the feasibility study of the proposed DCSK is presented through the scalability and link budget analysis in two different operation modes. The system performance in both additive white Gaussian noise (AWGN) channel and standardized IEEE 802.15.4a UWB multipath channels are provided in order to further demonstrate the capability of the proposed system.


Chaotic communications differential chaos shift keying transmit reference ultra wideband WPAN 


  1. 1.
    FCC, First report and order, 14 February 2002, Scholar
  2. 2.
    Win M.Z., Scholtz R.A., (1998) Impulse radio: how it works. IEEE Communication Letters 2(2): 36–38CrossRefGoogle Scholar
  3. 3.
    Win M.Z., Scholtz R.A., (1998) On the robustness of ultra-wide bandwidth signals in dense multipath environments, IEEE Communication Letters 2(2): 51–53CrossRefGoogle Scholar
  4. 4.
    Win M.Z., Scholtz R.A., (1998) On the energy capture of ultra-wide bandwidth signals in dense multipath environments. IEEE Communication Letters 2(9): 245–247CrossRefGoogle Scholar
  5. 5.
    Win M.Z., Scholtz R.A., (2000) Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications 48(4): 679–691CrossRefGoogle Scholar
  6. 6.
    IEEE 802.15.3a Task Group, WPAN High Rate Alternative PHY, Scholar
  7. 7.
    A. Batra et al., Multi-band OFDM physical layer proposal for IEEE 802.15 Task Group 3a, IEEE 802.15-03-0268-03-003a, Mar. 2004.Google Scholar
  8. 8.
    R. Fisher et al., DS-UWB physical layer submission to 802.15 Task Group 3a, IEEE 802.15-04-137-03-003a, July 2004.Google Scholar
  9. 9.
    IEEE 802.15.4a Task Group, WPAN Low Rate Alternative PHY, Scholar
  10. 10.
    C.-C. Chong et al., Samsung Electronics (SAIT) CFP Presentation for IEEE 802.15.4a Alternative PHY, IEEE 802.15-05-0030-02-004a, Jan. 2005.Google Scholar
  11. 11.
    N. Kim and I. Kim, Samsung DM R&D Center proposal, IEEE 802.15-05-0042-00-004a, Jan. 2005.Google Scholar
  12. 12.
    H.S. Lee et al., Chaotic pulse based communication system proposal, IEEE 802.15-05-0010-04-004a, Jan. 2005.Google Scholar
  13. 13.
    A. Abel and W. Schwarz, Chaos communications – principles, schemes, and systems analysis, Proceedings of the IEEE, Vol. 90, No. 5, pp. 691–710, 2002.Google Scholar
  14. 14.
    Quek T.Q.S., Win M.Z., (2005) Analysis of UWB transmitted reference communication systems in dense multipath channels. IEEE Journal of Selected Areas in Communications 23(9): 1863–1874CrossRefGoogle Scholar
  15. 15.
    Kolumbán G. (2000). Theoretical noise performance of correlator based chaotic communications schemes. IEEE Transactions on Circuits and Systems I 47(12): 1692–1701MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kolumbán G., Kennedy M.P., (2000) The role of synchronization in digital communication using chaos—Part III: performance bounds. IEEE Transactions on Circuits and Systems I 47(12): 1673–1683MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Chong C.-C., Yong S.K., Lee S.S., (2005) UWB direct chaotic communication technology. IEEE Antennas Wireless Propagation Letters 4:316–319CrossRefGoogle Scholar
  18. 18.
    C.-C. Chong and S.K. Yong, LR-WPAN system design based on UWB direct chaotic communication technology. Proceedings of IEEE Vehicular Technology Conference, Vol. 1, pp. 63–67, Dallas, TX, USA, September 2005.Google Scholar
  19. 19.
    S.K. Yong, C.-C. Chong and S.S. Lee, UWB-DCSK communication systems for low rate WPAN applications, Proceedings of IEEE International Symposium Personal, Indoor and Mobile Radio Communications (PIMRC 2005), Vol. 2, pp. 911–915, Berlin, Germany, September 2005.Google Scholar
  20. 20.
    G. Kolumbán, M.P. Kennedy, Z. Jako and G. Kis, Chaotic communications with correlator receivers: theory and performance limits, Proceedings of the IEEE, Vol. 90, No. 5, pp. 711–732, 2002.Google Scholar
  21. 21.
    G. Kolumbán, B. Vizvari, W. Schwarz and G. Abel, Differential chaos shift keying: a robust coding for chaos communication, In Proc. Intl Workshop on Non-linear Dynamics of Electronic Systems (NDES 1996), Seville, Spain, pp. 87–92, 1996.Google Scholar
  22. 22.
    P. Rouzet and J. Ellis, P802.15.4a Alt PHY selection criteria, IEEE 802.15-04-0232-16-004a, Nov. 2004.Google Scholar
  23. 23.
    IEEE Standard 802.15.4, Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs), IEEE P802.15.4a-D3, June 2006.Google Scholar
  24. 24.
    A.F. Molisch et al., IEEE 802.15.4a Channel model – Final report, IEEE 802.15-04-0662-02-004a, San Antonio, TX, USA, Nov. 2004.Google Scholar
  25. 25.
    A.F. Molisch, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal, J. Kunisch, H. Schantz, K. Siwiak and M.Z. Win, A comprehensive standardized model for ultrawideband propagation channels, IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, Nov. 2006.Google Scholar
  26. 26.
    Chong C.-C., Yong S.K., (2005) A generic statistical based UWB channel model for high-rise apartments. IEEE Transactions on Antennas and Propagation 53(8):2389–2399CrossRefGoogle Scholar
  27. 27.
    Chong C.-C., Kim Y., Yong S.K., Lee S.S., (2005) Statistical characterization of the UWB propagation channel in indoor residential environment. Wiley Journal on Wireless Communications and Mobile Computing 5(5):503–512CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Su-Khiong Yong
    • 1
  • Chia-Chin Chong
    • 2
  • Geza Kolumbán
    • 3
  1. 1.Samsung Advanced Institute of TechnologySuwonKorea
  2. 2.NTT DoCoMo USA LabsPalo AltoUSA
  3. 3.Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations