Advertisement

Validation of a short form of an indecision test: the vocational assessment test

  • France Picard
  • Éric Frenette
  • Frédéric Guay
  • Julie Labrosse
Article

Abstract

The purpose of this research was to validate the scores of a short form of a new instrument, l’Épreuve de décision vocationnelle, forme scolaire (EDV-9S; vocational assessment test), which measures six indecision-related problems (lack of self-knowledge, lack of readiness, lack of method in decision making, lack of information, external barriers, and dysfunctional beliefs). In Study 1 (n = 778; M age = 17.7 years; female = 55.4 %), we first assess the reliability and factorial validity of the EDV-9S scores. Subsequently, 24 of 48 items were selected using Rasch modeling. In Study 2 (n 1 = 757; M age = 18.0 years; female = 55.9 %), we assess the reliability, factorial validity, and convergent and divergent validity of the short form scores and their invariance across gender and over time. Findings from both studies suggest that the original as well as the short form scores present adequate psychometric properties and could be used to assess indecision problems in French-speaking students in higher education.

Keywords

Vocational assessment test Transcultural validation Vocational indecision 

Résumé

Élaboration d’une version abrégée d’un questionnaire d’indécision : l’Épreuve de décision vocationnelle, forme scolaire. La présente recherche a pour but de valider les scores d’une version abrégée de l’Épreuve de décision vocationnelle, forme scolaire (EDV-9S). Ce questionnaire comporte six dimensions mesurant les sources de l’indécision vocationnelle : le manque de connaissance de soi, le manque de développement vocationnel, le manque de méthode de décision, le manque d’information, les obstacles externes et les anticipations pessimistes. La première étude (n = 778; M âge = 17,7 ans; femmes = 55,4 %) a permis de vérifier le niveau de fidélité de chacune des échelles et de tester la validité factorielle de l’EDV-9S. La version abrégée a été mise au point à l’aide du modèle de Rasch (rating scale model); 24 items ont été sélectionnés sur les 48. La deuxième étude (n 1 = 757; M âge = 18,0 ans; femmes = 55,9 %) a permis d’évaluer le niveau de fidélité de chacune des échelles et de tester la validité factorielle, la validité convergente et divergente, ainsi que l’invariance en fonction du genre et du temps des scores de la version abrégée. Les résultats de ces deux études soulignent que la forme originale et la version abrégée de l’EDV-9S présentent des propriétés psychométriques adéquates. Ce questionnaire pourrait être utilisé afin d’évaluer les sources d’indécision de la population étudiante francophone aux études supérieures.

Zusammenfassung

Validierung einer Kurzform eines Unentschlossenheitstests: Der Berufs Assessment Test. Der Zweck dieser Untersuchung war es, die Werte einer Kurzform von einem neuen Instrument zu validieren, l’Épreuve de décision vocationnelle, forme scolaire (EDV-9S; Berufs Assessment Test). Das Instrument misst sechs Unentschlossenheit bezogene Probleme (Mangel an Selbstkenntnis, Mangel an Bereitschaft, Mangel an Verfahren der Entscheidungsfindung, fehlende Informationen, externe Barrieren und dysfunktionale Überzeugungen). In Studie 1 (n = 778; M Alter = 17,7 Jahre; weiblich = 55,4 %), prüfen wir zunächst die Zuverlässigkeit und die faktorielle Validität der Werte des EDV -9S. Anschließend wurden 24 von 48 Items mittels Rasch -Modellierung gewählt. In Studie 2 (n 1 = 757; M Alter = 18,0 Jahre; weiblich = 55,9 %), schätzen wir die Zuverlässigkeit, die faktorielle Validität, die konvergente und divergente Validität der Kurzform sowie deren Invarianz über Geschlecht und Zeit. Die Ergebnisse aus beiden Studien deuten darauf hin, dass die ursprüngliche und die Kurzform angemessene psychometrische Eigenschaften zeigen und zur Beurteilung von Unentschlossenheitsproblemen von Französisch-sprechenden Studenten in der Hochschulbildung verwendet werden können.

Resumen

Validación de una forma resumida de un test de indecisión: El Vocational Assessment Test. El objetivo de esta investigación fue validar los resultados de una forma resumida de una nueva herramienta, llamada l’Épreuve de décision vocationnelle, forme scolaire (EDV-9S; Vocational Assessment Test), que mide seis problemas relacionados con la indecisión (falta de autoconocimiento, falta de determinación, falta de método para la toma de decisiones, falta de información, barreras externas y creencias disfuncionales). En un primer experimento (n = 778; M edad = 17.7 años; mujer = 55.4 %), evaluamos la fiabilidad y la validez factorial de los resultados del EDV-9S. Para ello se seleccionaron mediante modelización de Rasch 24 de 48 preguntas. En un segundo experimento (n = 757; M edad = 18.0 años; mujer = 55.9 %), evaluamos la fiabilidad, la validez factorial, y la validez convergente y divergente de los resultados del test resumido, así como su invariabilidad en cuanto a sexo y a lo largo del tiempo. Se deduce de ambos estudios que los resultados del test original y del resumido presentan propiedades psicométricas adecuadas, y que ambos podrían emplearse perfectamente para evaluar los problemas de indecisión de los estudiantes francófonos de educación secundaria.

Notes

Acknowledgments

The EDV-9S was modified with special permission of the publisher. This research was supported by Grants from the Social Sciences and Humanities Research Council in Canada.

References

  1. Andersen, E. B. (1977). Sufficient statistics and latent trait models. Psychometrika, 42, 69–81. doi: 10.1007/BF02293746.CrossRefGoogle Scholar
  2. Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561–573. doi: 10.1007/BF02293814.CrossRefGoogle Scholar
  3. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246. doi: 10.1037/0033-2909.107.2.238.CrossRefGoogle Scholar
  4. Bentler, P. M. (2006). EQS structural equations program manual. Encico, CA: Multivariate Software Inc.Google Scholar
  5. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. Bollen & R. Stine (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage. doi: 10.1177/0049124192021002005.Google Scholar
  6. Byrne, B. M. (1995). Structural equation modeling with EQS and EQS/Windows: Basic concepts, applications, and programming. Thousand Oaks, CA: Sage.Google Scholar
  7. Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56, 81–105. doi: 10.1037/h0046016.CrossRefGoogle Scholar
  8. Campbell, D. T., & O’Connell, E. J. (1967). Methods factors in multitrait-multimethod matrices: Multiplicative rather than additive? Multivariate Behavioral Research, 2, 409–426.CrossRefGoogle Scholar
  9. Campbell, D. T., & O’Connell, E. J. (1982). Methods as diluting trait relationships rather than adding irrelevant systematic variance. New Directions for Methodology of Social and Behavioral Science, 12, 93–111. doi: 10.1207/s15327906mbr0204_1.Google Scholar
  10. Chartrand, J. M., & Robbins, S. B. (1997). Career factors inventory: Applications and technical guide. Palo Alto, CA: Consulting Psychologists.Google Scholar
  11. Cole, J. C., Rabin, A. S., Smith, T. M., & Kaufman, A. S. (2004). Development and validation of a Rasch-derived CES-D short form. Psychological Assessment, 16, 360–372. doi: 10.1037/1040-3590.16.4.360.CrossRefGoogle Scholar
  12. Conseil Supérieur de l’Éducation. (2008). The student’s engagement in his educational plan at the college level: A shared responsibility among all college stakeholders (Abridged version). Québec, Canada: Author.Google Scholar
  13. Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. New York, NY: Harcourt Brace-Jovanovich.Google Scholar
  14. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334. doi: 10.1007/BF02310555.CrossRefGoogle Scholar
  15. Deal, J. E., Halverson, C. F., Jr., Martin, R. P., Victor, J., & Baker, S. (2007). The inventory of children’s individual differences: Development and validation of a short version. Journal of Personality Assessment, 89, 162–166. doi: 10.1080/00223890701468550.CrossRefGoogle Scholar
  16. Field, A. (2005). Discovering statistics using SPSS (2nd ed.). Thousand Oaks, CA: Sage. doi: 10.1111/j.1365-2648.2007.04270_1.x.Google Scholar
  17. Forner, Y. (2000). Indécision et adaptation à l’université [Indecision and adjustment to the university]. L’Orientation Scolaire et Professionnelle, 29, 499–517.Google Scholar
  18. Forner, Y. (2007). L’indécision de carrière des adolescents [Adolescents’ career indecision]. Le Travail Humain, 70, 213–214.CrossRefGoogle Scholar
  19. Forner, Y. (2009). EDV Épreuve de Décision Vocationnelle [EDV Vocational Decision Test]. Paris, France: Eurotests Éditions.Google Scholar
  20. Forner, Y. (2010). L’évaluation de l’indécision vocationnelle: L’EDV-9 (forme S). [The validation of the EDV-9S]. L’Orientation Scolaire et Professionnelle, 39, iv–xxii.Google Scholar
  21. Gati, I., & Asher, I. (2001). The PIC model for career decision making: Prescreening, in-depth exploration, and choice. In F. T. L. Leong & A. Barak (Eds.), Contemporary models in vocational psychology (pp. 7–54). Mahwah, NJ: Erlbaum.Google Scholar
  22. Gati, I., Gadassi, R., & Mashiah-Cohen, R. (2012). Career decision-making profiles vs. styles. Convergent and incremental validity. Journal of Vocational Behavior, 81, 2–16. doi: 10.1016/j.jvb.2012.03.004.CrossRefGoogle Scholar
  23. Gati, I., Krausz, M., & Osipow, S. H. (1996). A taxonomy of difficulties in career decision making. Journal of Counseling Psychology, 43, 510–526. doi: 10.1037/0022-0167.43.4.510.CrossRefGoogle Scholar
  24. Germeijs, V., & Verschueren, K. (2006). High school students’ career decision-making process: Development and validation of the Study Choice Task Inventory. Journal of Career Assessment, 14, 449–471. doi: 10.1177/1069072706286510.CrossRefGoogle Scholar
  25. Gosling, S. D., Rentfrow, P. J., & Swann, W. B., Jr. (2003). A very brief measure of the big-five personality domains. Journal of Research in Personality, 37, 504–528. doi: 10.1016/S0092-6566(03)00046-1.CrossRefGoogle Scholar
  26. Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549–576. doi: 10.1146/annurev.psych.58.110405.085530.CrossRefGoogle Scholar
  27. Graunke, S. S., & Woosley, S. A. (2005). An exploration of the factors that affect the academic success of college sophomores. College Student Journal, 39, 367–377.Google Scholar
  28. Holland, J. L., Fritzsche, B. A., & Powell, A. B. (1994). Self-directed search: Technical manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
  29. Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fix indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(10), 1–55. doi: 10.1080/10705519909540118.CrossRefGoogle Scholar
  30. Kelly, K. R., & Lee, W.-C. (2002). Mapping the domain of career decision problems. Journal of Vocational Behavior, 61, 302–326. doi: 10.1006/jvbe.2001.1858.CrossRefGoogle Scholar
  31. Kline, P. (1999). The handbook of psychological testing (2nd ed.). London: Routledge.Google Scholar
  32. Las Hayas, C., Quintana, J. M., Padierna, J. A., Bilboa, A., & Munoz, P. (2010). Use of Rasch methodology to develop a short version of the health related quality of life for eating disorders questionnaire: a prospective study. Health and Quality of Life Outcomes, 8(29), 1–12. doi: 10.1186/1477-7525-8-29.Google Scholar
  33. Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of Vocational Behavior, 45, 79–122. doi: 10.1006/jvbe.1994.1027.CrossRefGoogle Scholar
  34. Linacre, J. M. (1994). FACETS. Rasch model computer program (version 2.7) [Computer software and software manual]. Chicago IL: MESA.Google Scholar
  35. Linacre, J. M. (2002). What do infit and outfit, mean-square and standardized mean? Rasch Measurement Transactions, 16, 878.Google Scholar
  36. Linacre, J. M., & Wright, B. D. (1999). WINSTEPS: Rasch-model computer program (Version 2.88) [computer software]. Chicago, IL: MESA.Google Scholar
  37. Marsh, H. W., & Butler, S. (1984). Evaluating reading diagnostic tests: An application of confirmatory factor analysis to multitrait-multimethod data. Applied Psychological Measurement, 8, 307–320. doi: 10.1177/014662168400800308.CrossRefGoogle Scholar
  38. Marsh, H. W., Ellis, L., Parada, L., Richards, G., & Heubeck, B. G. (2005). A short version of the self description questionnaire II: Operationalizing criteria for short-form evaluation with new applications of confirmatory factor analyses. Psychological Assessment, 17, 81–102. doi: 10.1037/1040-3590.17.1.81.CrossRefGoogle Scholar
  39. Marsh, H. W., Hau, K.-T., Balla, J. R., & Grayson, D. (1998). Is more ever too much? The number of indicators per factor in confirmatory factor analysis. Multivariate Behavioral Research, 33, 181–201.CrossRefGoogle Scholar
  40. Marsh, H. W., & Hocevar, D. (1988). A new, more powerful approach to multitrait-multimethod analyses: Application of second-order confirmatory factor analysis. Journal of Applied Psychology, 73(1), 107–117. doi: 10.1037/0021-9010.73.1.107.CrossRefGoogle Scholar
  41. Morgan, T., & Ness, D. (2003). Career decision-making difficulties of first-year students. The Canadian Journal of Career Development, 2, 33–39.Google Scholar
  42. Muck, P. M., Hell, B., & Gosling, S. D. (2007). Construct validation of a short five-factor model instrument. European Journal of Psychological Assessment, 23, 166–175. doi: 10.1027/1015-5759.23.3.166.CrossRefGoogle Scholar
  43. Neuville, S., & Frenay, M. (2012). La persévérance des étudiants de 1er baccalauréat à la lumière du modèle expectancy-value. [Persistence among first-year college students based on the expectancy-value model]. In M. Romainville & C. Michaut (Eds.), Réussite, échec et abandon dans l’enseignement supérieur (pp. 157–175). Bruxelles, Belgium: De Boeck.Google Scholar
  44. Nunally, J. C. (Ed.). (1978). Psychometric theory (2nd ed.). New York, NY: McGraw-Hill.Google Scholar
  45. Osipow, S. H. (1987). Manual for the career decision scale. Odessa, FL: Psychological Assessment Resources.Google Scholar
  46. Panagiotis, G. S., Sideridis, G. D., Protopapas, A., & Mouzaki, A. (2011). Psychometric evaluation of a receptive vocabulary test for Greek elementary students. Assessment for Effective Intervention, 37(1), 34–49. doi: 10.1177/1534509411413254.CrossRefGoogle Scholar
  47. Picard, F., Boutin, N., & Skakni, I. (2010). La session d’accueil et d’intégration: Un nouveau parcours d’accès à l’enseignement supérieur québécois [The transition session: A new pathway into Québec’s higher education system]. Éducation et Sociétés, 26(2), 29–43.CrossRefGoogle Scholar
  48. Poitras, C., Guay, F., & Ratelle, C. (2012). Using the self-directed search in research: Selecting a representative pool of items to measure vocational interests. Journal of Career Development, 39, 186–207. doi: 10.1177/0894845310384593.CrossRefGoogle Scholar
  49. Rammstedt, B., & John, O. P. (2007). Measuring personality in one minute or less. A 10-item short version of the Big Five Inventory in English and German. Journal of Research in Personality, 41, 203–212. doi: 10.1016/j.jrp.2006.02.001.CrossRefGoogle Scholar
  50. Robins, R. W., Hendin, H. M., & Trzesniewski, K. H. (2001). Measuring global self-esteem: Construct validation of a single-item measure and the Rosenberg Self-Esteem Scale. Personality and Social Psychology Bulletin, 27, 151–161.CrossRefGoogle Scholar
  51. Rose, H. A., & Elton, C. F. (1971). Attrition and the vocationally undecided student. Journal of Vocational Behavior, 1, 99–103. doi: 10.1016/0001-8791(71)90011-X.CrossRefGoogle Scholar
  52. Sabourin, S., Valois, P., & Lussier, Y. (2005). Development and validation of a brief version of the Dyadic adjustment scale with nonparametric item analysis model. Psychological Assessment, 17, 15–27. doi: 10.1037/1040-3590.17.1.15.CrossRefGoogle Scholar
  53. Schumacker, R. E., & Lomax, R. G. (1996). A beginner’s guide to structural equation modeling. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  54. Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation. approach. Multivariate Behavioral Research, 25, 173–180. doi: 10.1207/s15327906mbr2502_4.CrossRefGoogle Scholar
  55. Taylor, K. M. (1982). An investigation of vocational indecision in college students: Correlates and moderators. Journal of Vocational Behavior, 21, 318–329. doi: 10.1016/0001-8791(82)90040-9.CrossRefGoogle Scholar
  56. Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10. doi: 10.1007/BF02291170.CrossRefGoogle Scholar
  57. van de Schoot, R., Lugtig, P., & Hox, J. (2012). Developmetrics. A checklist for testing measurement invariance. European Journal of Developmental Psychology, 9, 486–492. doi: 10.1080/17405629.2012.686740.CrossRefGoogle Scholar
  58. Weller, J. A., Dieckmann, N. F., Tusler, M., Mertz, C. K., Burns, W. J., & Peters, E. (2012). Development and testing of an abbreviated numeracy scale. A Rasch analysis approach. Journal of Behavioral Decision Making. Advance online publication. doi: 10.1002/bdm.1751.
  59. Wright, B. D., & Linacre, J. (1989). Observations are always ordinal; measurement, however, must be interval. Archive of Physical Medicine and Rehabilitation, 71, 857–860.Google Scholar
  60. Wright, B. D., & Masters, G. N. (1982). Rating scale analysis: Rasch measurement. Chicago, IL: MESA.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • France Picard
    • 1
  • Éric Frenette
    • 2
  • Frédéric Guay
    • 3
  • Julie Labrosse
    • 4
  1. 1.Centre de recherche et d’intervention sur l’éducation et la vie au travail (CRIEVAT), Département des Fondements et pratiques en éducation, Pavillon des sciences de l’éducationUniversité LavalQuebecCanada
  2. 2.Département des Fondements et pratiques en éducation, Pavillon des sciences de l’éducationUniversité LavalQuebecCanada
  3. 3.Pavillon des sciences de l’éducationUniversité LavalQuebecCanada
  4. 4.Centre d’Étude des COnditions de vie et des BESoins de la population (ÉCOBES)Cégep de JonquièreJonquièreCanada

Personalised recommendations