On Bound States in Quantum Field Theory

Abstract

In this paper, a new method to describe the energy spectrums of bound states in Quantum Field Theory is presented. We point out that the fundamental field and its dual soliton combine together to form bound states and the soliton corresponds to the ghost particle in our regularization scheme which takes advantage of dimensional regularization and Pauli-Villars regularization. Based on this point of view, we discuss the bound states of massive Thirring model, the positronium (e+e) in QED and the vector meson in QCD. We also give a new way to obtain the mass of soliton (quantum soliton) from the stationary condition (gap equation). Our results agree with experimental data to high precision. We argue that the hypothetic X17 particle in decay of 8Be and 4He is a soliton. For vector meson, we find the squared masses of ρ resonances are \(m^{2}(n)\sim (an^{1/3}-b)^{2}\) (nN) which coincide well with experiments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Witten, E.: . Commun. Math. Phys. 252, 189 (2004). arXiv:0312171[hep-th]; Britto, R., Cachazo, F., and Feng, B.: Nucl. Phys. B 715, 499 (2005). arXiv:0412308[hep-th]; Britto, R., Cachazo, F., Feng, B. and Witten, E.: Phys. Rev. Lett. 94, 181602 (2005). arXiv:0501052[hep-th]; Feng, B. and Liu, C. Y.: JHEP 1007, 093 (2010). arXiv:1004.1282[hep-th]; Jia, Y., Huang, R. and Liu, C. Y.: Phys. Rev. D 82, 065001 (2010). arXiv:1005.1821[hep-th]

    ADS  Article  Google Scholar 

  2. 2.

    Salpeter, E.E., Bethe, H.A.: . Phys. Rev. 84, 1232 (1951). Nakanishi, N.: Prog. Theor. Phys. Suppl. 43, 1 (1969); Efimov, G. V.: Few Body Syst. 33, 199 (2003). arXiv:0304194[hep-ph]

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Wilson, K.G.: . Phys. Rev. D 10, 2445 (1974). Gupta, R.: arXiv:9807028[hep-lat]

    ADS  Article  Google Scholar 

  4. 4.

    Källén, G.: . Helv. Phys. Acta 25(4), 417 (1952). Lehmann, H.: Nuovo Cim. 11, 342–357 (1954)

    Google Scholar 

  5. 5.

    Dirac, P.A.M.: . Proc. Roy. Soc. Lond. A 133(821), 60 (1931)

    ADS  Article  Google Scholar 

  6. 6.

    ’t Hooft, G.: . Nucl. Phys. B 79, 276 (1974). Polyakov, A.M.: JETP Lett. 20, 194 (1974) [Pisma zh. Eksp. Teor. Fiz. 20, 430 (1974)]; Kirkman, T.W. and Zachos, C.K.: Phys. Rev. D 24, 999 (1981)

    ADS  Article  Google Scholar 

  7. 7.

    Prasad, M., Sommerfield, C.M.: . Phys. Rev. Lett. 35, 760–762 (1975). Bogomolny, E.: Sov. J. Nucl. Phys. 24, 449 (1976)

    ADS  Article  Google Scholar 

  8. 8.

    Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Westview Press (1995)

  9. 9.

    Pauli, W., Villars, F.: . Rev. Mod. Phys. 21, 434 (1949)

    ADS  Article  Google Scholar 

  10. 10.

    ’t Hooft, G., Veltman, M.: . Nucl. Phys. B 44, 189–213 (1972)

    ADS  Article  Google Scholar 

  11. 11.

    Liu, C.-Y.: Note on anomalies in field theories. http://chinaxiv.org/abs/202008.00076(2020)

  12. 12.

    Adler, S.L.: . Phys. Rev. 177, 2426–2438 (1969)

    ADS  Article  Google Scholar 

  13. 13.

    Bell, J.S., Jackiw, R.: . Nuovo Cim. A 60, 47–61 (1969)

    ADS  Article  Google Scholar 

  14. 14.

    Thirring, W.E.: . Annals Phys. 3, 91 (1958)

    ADS  Article  Google Scholar 

  15. 15.

    Coleman, S.R.: . Phys. Rev. D 11, 2088 (1975)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Dashen, R.F., Hasslacher, B., Neveu, A.: . Phys. Rev. D 10, 4114 (1974). Dashen, R.F., Hasslacher, B. and Neveu, A.: Phys. Rev. D 11, 3424 (1975); Weinberg, E.J.: Classical solutions in quantum field theory : Solitons and Instantons in High Energy Physics. Cambridge University Press (2012)

    ADS  Article  Google Scholar 

  17. 17.

    Aoyama, S.: . Prog. Theor. Phys. 59, 1723 (1978)

    ADS  Article  Google Scholar 

  18. 18.

    Orfanidis, S.J., Wang, R.: . Phys. Lett. B 57, 281–283 (1975). Orfanidis, S.J.: Phys. Rev. D 14, 472 (1976); Kaup, D. and Newell, A.: Lett. Nuovo Cim. 20, 325–331 (1977); Kuznetsov, E. and Mikhailov, A.: Teor. Mat. Fiz. 30, 303–314 (1977); Zakharov, V. and Mikhailov, A.: Sov. Phys. JETP 47, 1017–1027 (1978); Martinez Alonso, L.: Phys. Rev. D 30, 2595–2601 (1984); Korepin, V., Bogoliubov, N. and Izergin, A.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press (1996)

    ADS  Article  Google Scholar 

  19. 19.

    Schwinger, J.S.: . Phys. Rev. 82, 664 (1951)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Itzykson, C., Zuber, J.B.: Quantum Field Theory. Mcgraw-hill, New York (1980)

    Google Scholar 

  21. 21.

    Gross, D.J., Neveu, A.: . Phys. Rev. D 10, 3235 (1974)

    ADS  Article  Google Scholar 

  22. 22.

    Dashen, R.F., Hasslacher, B., Neveu, A.: . Phys. Rev. D 12, 2443 (1975). Feinberg, J.: Phys. Rev. D 51, 4503–4511 (1995). arXiv:9408120[hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Feinberg, J., Zee, A.: . Phys. Lett. B 411, 134–140 (1997). arXiv:9610009[hep-th]; Thies, M. and Urlichs, K.: Phys. Rev. D 71, 105008 (2005). arXiv:0502210[hep-th]; Feinberg, J. and Hillel, S.: Phys. Rev. D 72, 105009 (2005). arXiv:0509019[hep-th]

    ADS  Article  Google Scholar 

  24. 24.

    Davies, D.: . arXiv:1907.10616[hep-th]; Delfino, G., Selke, W. and Squarcini, A.: Phys. Rev. Lett. 122(5), 050602 (2019). arXiv:1808.09276[cond-mat.stat-mech] (2019)

  25. 25.

    Krasznahorkay, A.J., Csatlós, M., Csige, L., Gácsi, Z., Gulyás, J., Hunyadi, M., Ketel, T.J., Krasznahorkay, A., Kuti, I. , Nyakó, M.B., et al.: . Phys. Rev. Lett. 116(4), 042501 (2016). arXiv:1504.01527[nucl-ex]; Feng, J. L., Fornal, B., Galon, I., Gardner, S., Smolinsky, J., Tait, T. M. P. and Tanedo, P.: Phys. Rev. Lett. 117(7), 071803 (2016). arXiv:1604.07411[hep-ph]; Krasznahorkay, A. J., Csatlós, M., Csige, L., Gulyás, J., Koszta, M., Szihalmi, B., Timár, J., Firak, D. S., Nagy, Á. and Sas, N. J., et al.: arXiv:1910.10459[nucl-ex]

    ADS  Article  Google Scholar 

  26. 26.

    Montonen, C., Olive, D.I.: . Phys. Lett. 72B, 117 (1977). Seiberg, N. and Witten, E.: Nucl. Phys. B 426, 19 (1994) Erratum: [Nucl. Phys. B 430, 485 (1994)]. arXiv:9407087[hep-th]; Chen, B. and He, W.: Phys. Rev. D 74, 126008 (2006). arXiv:0607024[hep-th]; Liu, C. Y. and Qin, L.: JHEP 1510, 102 (2015). arXiv:1505.06399[hep-th]; Faraggi, A., Pando Zayas, L. A., Silva, G. A. and Trancanelli, D.: JHEP 1604, 053 (2016). arXiv:1601.04708[hep-th]

    ADS  Article  Google Scholar 

  27. 27.

    Nielsen, H.B., Olesen, P.: . Nucl. Phys. B 160, 380 (1979). Kogut, J.B. and Susskind, L.: Phys. Rev. D 9, 3391 (1974); ’t Hooft, G.: Nucl. Phys. B 138, 1 (1978); Mandelstam, S.: Phys. Rept. 23, 307 (1976)

    ADS  Article  Google Scholar 

  28. 28.

    Eidelman, S., et al.: Particle data group. Phys. Lett. B 592(1-4), 1 (2004). Zhang, P.: Phys. Rev. D 82, 094013 (2010). arXiv:1007.2163[hep-ph]

    ADS  Article  Google Scholar 

  29. 29.

    Collins, P.D.B.: An Introduction to Regge Theory and High-Energy Physics. Cambridge University Press (1977)

Download references

Acknowledgments

This work is supported by Chinese Universities Scientific Fund Grant No. 2452018158. We would like to thank Dr. Wei He, Youwei Li and Suzhi Wu for helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Changyong Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C. On Bound States in Quantum Field Theory. Int J Theor Phys (2021). https://doi.org/10.1007/s10773-021-04723-1

Download citation

Keywords

  • Quantum field theory
  • Bound state
  • Soliton