Holographic Complexity in AdS Accelerating Black Holes

Abstract

In this paper, we investigate the holographic complexity growth rate of the AdS accelerating black hole with a small mass for Einstein gravity by using the “complexity equals action” (CA-duality). By considering the contributions from the bulk, boundary term, and joint terms, we find the result of the action growth at the late time. In particular, we find the action growth only relies on the conical deficits parameter K and is independent of the accelerating A.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Susskind, L.: Fortsch. Phys. 64, 24 (2016)

    ADS  Article  Google Scholar 

  2. 2.

    Stanford, D., Susskind, L.: Phys. Rev. D 90, 126007 (2014)

    ADS  Article  Google Scholar 

  3. 3.

    Brown, A.R., Roberts, D.A., Susskind, L., Swingle, B., Zhao, Y.: Phys. Rev. Lett. 116, 191301 (2016)

    ADS  Article  Google Scholar 

  4. 4.

    Brown, A.R., Roberts, D.A., Susskind, L., Swingle, B., Zhao, Y.: Phys. Rev. D 93, 086006 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Lloyd, S.: Nature 406, 1047 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    Roberts, D.A., Stanford, D., Susskind, L.: Localized shocks. JHEP 1503, 051 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Susskind, L., Zhao, Y.: arXiv:1408.2823 (2014)

  8. 8.

    Jiang, J.: Rev. Phys. D 98, 086018 (2018)

    Article  Google Scholar 

  9. 9.

    Lehner, L., Myers, R.C., Poisson, E., Sorkin, R.D.: Phys. Rev. D 94, 084046 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Carmi, D., Chapman, S., Marrochio, H., Myers, R.C., Sugishita, S.: JHEP 1711, 188 (2017)

    ADS  Article  Google Scholar 

  11. 11.

    Jiang, J., Shan, J., Yang, J.: arXiv:1810.00537 (2020)

  12. 12.

    Jiang, J., Zhang, H.: Phys. Rev. D 086005, 99 (2019)

    MathSciNet  Google Scholar 

  13. 13.

    Jiang, J., Zhang, M.: arXiv:1905.07576 (2019)

  14. 14.

    Fan, Z.Y., Guo, M.: arXiv:1811.01473 (2018)

  15. 15.

    Couch, J., Eccles, S., Fischler, W., Xiao, M.L.: JHEP 1803, 108 (2018)

    ADS  Article  Google Scholar 

  16. 16.

    Fan, Z.Y., Guo, M.: JHEP 1808, 031 (2018)

    ADS  Article  Google Scholar 

  17. 17.

    Yang, R.Q., An, Y.S., Niu, C., Zhang, C.Y., Kim, K.Y.: arXiv:1809.06678 (2018)

  18. 18.

    Yang, R.Q., An, Y.S., Niu, C., Zhang, C.Y., Kim, K.Y.: arXiv:1809.06678 (2018)

  19. 19.

    Yang, R.Q., An, Y.S., Niu, C., Zhang, C.Y., Kim, K.Y.: arXiv:1803.01797 (2018)

  20. 20.

    Jiang, J., Liu, X.: Phys. Rev. D 99, 026011 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Jiang, J.: Eur. Phys. J. C 79, 130 (2019)

    ADS  Article  Google Scholar 

  22. 22.

    Jiang, J., Li, X.W.: arXiv:1903.05476

  23. 23.

    Jiang, J., Ge, B.X.: Phys. Rev. D 99, 126006 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    Feng, X.H., Liu, H.S.: arXiv:1811.03303

  25. 25.

    Carmi, D., Myers, R.C., Rath, P.: JHEP 1703, 118 (2017)

    ADS  Article  Google Scholar 

  26. 26.

    Fan, Z.Y., Guo, M.: Phys. Rev. D 100, 026016 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Jefferson, R., Myers, R.C.: JHEP 1710, 107 (2017)

    ADS  Article  Google Scholar 

  28. 28.

    Hackl, L., Myers, R.C.: JHEP 1807, 139 (2018)

    ADS  Article  Google Scholar 

  29. 29.

    Khan, R., Krishnan, C., Sharma, S.: Phys. Rev. D 98(12), 126001 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Guo, M., Hernandez, J., Myers, R.C., Ruan, S.M.: JHEP 1810, 011 (2018)

    ADS  Article  Google Scholar 

  31. 31.

    Chapman, S., Eisert, J., Hackl, L., Heller, M.P., Jefferson, R., Marrochio, H., Myers, R.C.: SciPost Phys. 6(3), 034 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    Guo, M., Fan, ZY, Jiang, J., Liu, X., Chen, B.: Phys.Rev.D 101(12), 126007 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    Kinnersley, W., Walker, M.: Phys. Rev. D 2, 1359 (1970)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Plebanski, J.F., Demianski, M.: Ann. Phys. (N.Y.) 98, 98 (1976)

    ADS  Article  Google Scholar 

  35. 35.

    Dias, O.J.C., Lemos, J.P.S.: Phys. Rev. D 67, 064001 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    Griffiths, J.B., Podolsky, J.: Int. J. Mod. Phys. D 15, 335 (2006)

    ADS  Article  Google Scholar 

  37. 37.

    Zhang, M., Mann, R.B.: Phys. Rev. D 100, 084061 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  38. 38.

    Anabalón, A., Appels, M., Gregory, R., Kubizňák, D., Mann, R.B., Övgün, A.: Phys. Rev. D 98, 104038 (2018)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sen Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Pei, Y. Holographic Complexity in AdS Accelerating Black Holes. Int J Theor Phys (2021). https://doi.org/10.1007/s10773-021-04714-2

Download citation

Keywords

  • Holographic complexity
  • Black holes
  • AdS/CFT