Demonstration of Quantum Nonlocality for Multi-Qubit Systems via Quantum Programming

Abstract

Quantum nonlocality can be shown by measuring a quantum system containing multipartite entangled state. A key to quantum measurement is to find out what kinds of measurement settings are optimal. We design programable quantum circuit to demonstrate quantum nonlocality for multi-qubit systems based on quantum programming. A series of multiple quantum measurements are performed via cycle structure. As a result, we reveal quantum nonlocality of multipartite quantum systems as well as verify optimizing of measurement settings.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Lu, Y., Zhang, S.N., Zhang, K., et al.: . Nature 572, 363 (2019)

    ADS  Google Scholar 

  2. 2.

    Figgatt, C., Ostrander, A., Linke, N.M., et al.: . Nature 572, 368 (2019)

    ADS  Google Scholar 

  3. 3.

    Kok, P., Munro, W.J., Nemoto, K., et al.: . Rev. Mod. Phys. 79, 135 (2007)

    ADS  Google Scholar 

  4. 4.

    Pan, J.W., Chen, Z.B., Lu, C.Y., et al.: . Rev. Mod. Phys. 84, 777 (2012)

    ADS  Google Scholar 

  5. 5.

    Makhlin, Y., Schön, G., Shnirman, A.: . Rev. Mod. Phys. 73, 357 (2001)

    ADS  Google Scholar 

  6. 6.

    Gu, X., Kockum, A.F., Miranowicz, A., et al.: . Phys. Rep. 718, 1 (2017)

    ADS  MathSciNet  Google Scholar 

  7. 7.

    Ye, Y.S., Ge, Z.Y., Wu, Y.L., et al.: . Phys. Rev. Lett. 123, 050502 (2019)

    ADS  Google Scholar 

  8. 8.

    Horodecki, R., Horodecki, P., Horodecki, M., et al.: . Rev. Mod. Phys. 81, 865 (2009)

    ADS  Google Scholar 

  9. 9.

    Gühne, O., Tóth, G.: . Phys. Rep. 474, 1 (2009)

    ADS  MathSciNet  Google Scholar 

  10. 10.

    Kwiat, P.G., Mattle, K., Weinfurter, H., et al.: . Phys. Rev. Lett. 75, 4337 (1995)

    ADS  Google Scholar 

  11. 11.

    Kok, P.: . Phys. Rev. A 77, 013808 (2008)

    ADS  Google Scholar 

  12. 12.

    Ding, D., Yan, F.L., Gao, T.J.: . Opt. Soc. Am. B 30, 3075 (2013)

    ADS  Google Scholar 

  13. 13.

    Ding, D., Yan, F.L., Gao, T.: . Sci. China-Phys. Mech. Astron. 57, 2098 (2014)

    ADS  Google Scholar 

  14. 14.

    He, Y.Q., Ding, D., Yan, F.L., et al.: . Opt. Express 23, 21671–21677 (2015)

    ADS  Google Scholar 

  15. 15.

    Wang, X.L., Luo, Y.H., Huang, H.L., et al.: . Phys. Rev. Lett. 120, 260502 (2018)

    ADS  Google Scholar 

  16. 16.

    Chen, Y.H., Brun, T.A.: . Phys. Rev. A 99, 062121 (2019)

    ADS  Google Scholar 

  17. 17.

    Bell, J.S.: . Physics (long island city, N.Y.) 1, 195 (1964)

    Google Scholar 

  18. 18.

    Gisin, N.: . Phys. Lett. A 154, 201 (1991)

    ADS  MathSciNet  Google Scholar 

  19. 19.

    Gisin, N., Peres, A.: . Phys. Lett. A 162, 15 (1992)

    ADS  MathSciNet  Google Scholar 

  20. 20.

    Clauser, J.F., Horne, M.A., Shimony, A., et al.: . Phys. Rev. Lett. 23, 880 (1969)

    ADS  Google Scholar 

  21. 21.

    Svetlichny, G.: . Phys. Rev. D 35, 3066 (1987)

    ADS  MathSciNet  Google Scholar 

  22. 22.

    Mermin, N.D.: . Phys. Rev. Lett. 65, 1838 (1990)

    ADS  MathSciNet  Google Scholar 

  23. 23.

    Werner, R.F., Wolf, M.M.: . Phys. Rev. A 64, 032112 (2001)

    ADS  Google Scholar 

  24. 24.

    Żukowski, M., Brukner, Č.: . Phys. Rev. Lett. 88, 210401 (2002)

    ADS  MathSciNet  Google Scholar 

  25. 25.

    Li, M., Fei, S.M.: . Phys. Rev. A 86, 052119 (2012)

    ADS  Google Scholar 

  26. 26.

    Wu, Y.C., Żukowski, M., Chen, J.L., Guo, G.C.: . Phys. Rev. A 88, 022126 (2013)

    ADS  Google Scholar 

  27. 27.

    He, Y.Q., Ding, D., Yan, F.L., Gao, T.: . Europhys. Lett. 111, 40001 (2015)

    ADS  Google Scholar 

  28. 28.

    Ding, D., He, Y.Q., Yan, F.L., Gao, T.: J. Phys. A-Math. Theor. J. Phys. A: Math. Theor. 53, 265301 (2020)

  29. 29.

    Knill, E. Technical Report LAUR-96-2724 (Los Alamos National Laboratory) (1996)

  30. 30.

    La Cour, B.R., Ostrove, C.I., Ott, G.E., et al.: . Int. J. Quantum Inf. 14, 1640004 (2016)

    MathSciNet  Google Scholar 

  31. 31.

    Wu, N., Song, F.M., Li, X.: . Chin. J. Comput. 12(in Chinese), 2429 (2016)

    Google Scholar 

  32. 32.

    Green, A., Lumsdaine, P., Ross, N., et al. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI) 333 (2013)

  33. 33.

    Javadiabhari, A., Patil, S., Kudrow, D., et al. arXiv:http://arxiv.org/abs/1507.01902 (2015)

  34. 34.

    Wecker, D., Svore, K.M. arXiv:http://arxiv.org/abs/1402.4467 (2014)

  35. 35.

    Heinosaari, T., Miyadera, T., Tukiainen, M.: . Quantum Inf. Process. 16, 85 (2017)

    ADS  Google Scholar 

  36. 36.

    Ying, M.S., Yu, N.K., Feng, Y., Duan, R.Y.: . Sci. Comput. Program. 78(9), 1679–1700 (2013)

    Google Scholar 

  37. 37.

    Liu, S.S., He, K., Duan, R.Y.: . Sci. China-Inf. Sci. 62(12), 222501 (2019)

    MathSciNet  Google Scholar 

  38. 38.

    Uola, R., Kraft, T., Shang, J.W., et al.: . Phys. Rev. Lett. 122, 130404 (2019)

    ADS  Google Scholar 

  39. 39.

    Ying, M.S.: . Form. Asp. Comput. 31, 3 (2019)

    MathSciNet  Google Scholar 

  40. 40.

    Arute, F., Arya, K., Babbush, R., et al.: . Nature 574, 505–510 (2019)

    ADS  Google Scholar 

  41. 41.

    Caspani, L., Xiong, C., Eggleton, B.J., et al.: . Light-Sci. Appl. 6, e17100 (2017)

    Google Scholar 

  42. 42.

    Pino, H., Prat-Camps, J., Sinha, K., et al.: . Quantum Sci. Technol. 3, 025001 (2018)

    ADS  Google Scholar 

  43. 43.

    Raffaelli, F., Ferranti, G., Mahler, D.H., et al.: . Quantum Sci. Technol. 3, 025003 (2018)

    ADS  Google Scholar 

  44. 44.

    Titchener, J.G., Gräfe, M., Heilmann, R., et al.: . npj Quant. Inform. 4, 19 (2018)

    ADS  Google Scholar 

  45. 45.

    Devra, A., Prabhu, P., Singh, H., et al.: . Quantum Inf. Process. 17, 67 (2018)

    ADS  Google Scholar 

  46. 46.

    Faruque, I.I., Sinclair, G.F., Bonneau, D., et al.: . Opt. Express 26(16), 327627 (2018)

    Google Scholar 

  47. 47.

    Mukhopadhyay, A., Sen, B., Thapliyal, K., et al.: . Quantum Inf. Process. 18, 234 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No: 11547169, the Research Project of Science and Technology in Higher Education of Hebei Province of China under Grant No: QN2019305, the Innovation and Entrepreneurship Training Program for College Students of North China Institute of Science and Technology, the Fundamental Research Funds for the Central Universities of Ministry of Education of China under Grant Nos: 3142019020, 3142017069, the National Key Research Project of China under Grant No: 2018YFC0808306, the Key Research Project of Hebei IoT Monitoring Engineering Technology Research Center under Grant No: 3142016020.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dong Ding.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Wang, C., Wan, L. et al. Demonstration of Quantum Nonlocality for Multi-Qubit Systems via Quantum Programming. Int J Theor Phys 59, 2486–2493 (2020). https://doi.org/10.1007/s10773-020-04516-y

Download citation

Keywords

  • Quantum nonlocality
  • Quantum programming