Quantum Private Comparison Protocol without a Third Party

Abstract

This paper presents a quantum private comparison (QPC) protocol based on Bell states. The proposed QPC protocol can secretly compare information of the two participants without the help of a third party (TP). The proposed protocol employs some decoy state photons and quantum SWAP gates to resist various outside attacks and internal attacks. This paper compares the presented quantum private comparison (QPC) protocol with other schemes in terms of different indicators. The results show that the proposed protocol has some advantages different from previous protocols.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Zhang, W., Ding, D.S., Sheng, Y.B., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    ADS  Google Scholar 

  2. 2.

    He, Y.F., Ma, W. P.: Three-party quantum secure direct communication against collective noise. Quantum Inf. Process 16(10), 252 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  3. 3.

    Xu, T.T., Li, Z.H., Bai, C.M., et al.: A new improving quantum secret sharing scheme. Int. J. Theor. Phys. 56, 1–10 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  4. 4.

    Bai, C.M., Li, Z.H., Xu, T.T., et al.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf. Process 16(3), 59 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  5. 5.

    Wu, W.Q., Cai, Q.Y., Zhang, H.G., et al.: Quantum public key cryptosystem based on bell states. Int. J. Theor. Phys. 56(11), 3431–3440 (2017)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Wu, W.Q., Cai, Q.Y., Zhang, H.G., et al.: Bit-oriented quantum public-key cryptosystem based on bell states. Int. J. Theor. Phys. 57(12), 1–11 (2018)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Physica Scripta 80(6), 065002 (2009)

    ADS  MATH  Google Scholar 

  8. 8.

    Ye, T.Y., Ji, Z.X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56(5), 1517–1529 (2017)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Pan, H.M.: Quantum private comparison based on x-type entangled states. Int. J. Theor. Phys. 56(10), 3340–3347 (2017)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Inf. Process 16(7), 177 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  11. 11.

    Xu, L., Zhao, Z.: A robust and efficient quantum private comparison of equality based on the entangled swapping of GHZ-like state and χ+ state. Int. J. Theor. Phys. 56(8), 2671–2685 (2017)

    MATH  Google Scholar 

  12. 12.

    Xu, L., Zhao, Z.: Quantum private comparison protocol based on the entanglement swapping between (χ+) state and W-Class state. Quantum Inf. Process. 16(12), 302 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  13. 13.

    Zhou, M.K.: Improvements of quantum private comparison protocol based on cluster states. Int. J. Theo. Phys. 2, 1–6 (2017)

    Google Scholar 

  14. 14.

    Wu, W.Q., Cai, Q.Y, Wu, S.M., et al.: Cryptanalysis and improvement of Ye et al’s quantum private comparison protocol. Int. J. Theor. Phys. 58(6), 1892–1900 (2019)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Hung, S.M., Hwang, S.L., Hwang, T., et al.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  16. 16.

    Wu, W.Q., Cai, Q.Y., Wu, S.M., et al.: Cryptanalysis of He’s quantum private comparison protocol and a new protocol. Int. J. Quantum Inf. 17(3), 1950026 (2019)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1998)

    ADS  Google Scholar 

  18. 18.

    Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 157 (2013)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    He, G.P.: Quantum private comparison protocol without a third party. Int. J. Quantum Inf. 15(2), 1750014 (2016)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    He, G.P: Device-independent quantum private comparison protocol without a third party. arXiv:1710.05051

  21. 21.

    Gockenbach, M.S.: Finite-dimensional linear algebra. CRC Press, Boca Raton (2010)

    Google Scholar 

  22. 22.

    Wilmott, C., Wild, P.: On a generalized quantum SWAP gate. Int. J. Quantum Inf. 10(03), 1250034 (2008)

    MATH  Google Scholar 

  23. 23.

    Wang, T.Y., Wen, Q.Y., Zhu, F. C.: Cryptanalysis of multiparty quantum secret sharing with Bell states and Bell measurements. Optics Communications 284(6), 1711–1713 (2011)

    ADS  Google Scholar 

  24. 24.

    Wang, W., Cao, H.: An Improved Multiparty Quantum Secret Sharing with Bell States and Bell Measurement. Int. J. Theor. Phys. 52(6), 2099–2111 (2013)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Lin, J., Hwang, T.: An enhancement on Shi others.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    ADS  Google Scholar 

  26. 26.

    Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Zhou, M.K.: Improvements of quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 2, 1–6 (2017)

    Google Scholar 

Download references

Acknowledgments

The authors are supported by the Natural Science Foundation of HeBei Province Nos. F2017201199.

Author information

Affiliations

Authors

Corresponding author

Correspondence to XiaoXue Ma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Ma, X. Quantum Private Comparison Protocol without a Third Party. Int J Theor Phys 59, 1854–1865 (2020). https://doi.org/10.1007/s10773-020-04453-w

Download citation

Keywords

  • Quantum cryptography
  • Quantum private comparison
  • Bell states