Skip to main content
Log in

Effect of PT-Symmetric Operator on Coherence Under the Non-Markovian Environments

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, we mainly investigate effect of PT-symmetric operation on the dynamic behavior of the relative entropy of coherence for a two-level system within non-Markovian environments and put forward a feasible physical scheme to recover coherence by utilizing optimal PT-symmetric operation. The results show that the damaged quantum coherence can be effectively restored under influence of the non-Markovian regimes. Furthermore, the freezing phenomenon of the coherence can be detected by using the optimal PT-symmetric operation strength within the non-Markovian environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aberg, J.: Quantifying superposition. arXiv:quant-ph/0612146 (2006)

  2. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  3. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  4. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  7. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Killoran, N., Steinhoff, F.E.S., Plenio, M.B.: Converting nonclassicality into entanglement. Phys. Rev. Lett. 116, 080402 (2016)

    Article  ADS  Google Scholar 

  9. Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)

    Article  ADS  Google Scholar 

  10. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117, 030401 (2016)

    Article  ADS  Google Scholar 

  11. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  13. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  14. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gour, G., Spekkens, R.W.: Fundamental limitations for quantum and nanoscale thermodynamics. New J. Phys. 10, 033023 (2008)

    Article  ADS  Google Scholar 

  18. Gour, G., Marvian, I., Spekkens, R.W.: Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80, 012307 (2009)

    Article  ADS  Google Scholar 

  19. Brandäo, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013)

    Article  ADS  Google Scholar 

  20. Bowles, J., Vertesi, T., Quintino, M.T., Brunner, N.: One-way Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 112, 200402 (2014)

    Article  ADS  Google Scholar 

  21. Costa, A.C.S., Angelo, R.M.: Quantification of Einstein-Podolski-Rosen steering for two-qubit states. Phys. Rev. A 93, 020103 (2016)

    Article  ADS  Google Scholar 

  22. Wang, Y.T., Tang, J.S., Li, C.F.: Directly measuring the degree of quantum coherence using interference fringes. Phys. Rev. Lett. 118, 020403 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. He, Z., Zeng, H.-S., Li, Y., Wang, Q., Yao, C.: Non-markovianity measure based on the relative entropy of coherence in an extended space. Phys. Rev. A 96, 022106 (2017)

    Article  ADS  Google Scholar 

  24. Bellomo, B., Franco, R.L., Compagno, G.: Non-markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  25. Garraway, B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55, 2290 (1997)

    Article  ADS  Google Scholar 

  26. Maniscalco, S., Petruccione, F.: Non-markovian dynamics of a qubit. Phys. Rev. A 73, 012111 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  27. Himadri, S.D., Manabendra, N.B., Gerardo, A.: Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A 91, 032115 (2015)

    Article  Google Scholar 

  28. Chanda, T., Samyadeb, B.: Delineating incoherent non-Markovian dynamics using quantum coherence. Ann. Phys. 366, 1 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  32. Sergi, A., Zloshchastiev, K.G.: Non-hermitian quantum dynamics of a two-level system and models of dissipative environments. Int. J. Mod. Phys. B 27, 1345053 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sergi, A., Zloshchastiev, K.G.: Time correlation functions for non-Hermitian quantum systems. Phys. Rev. A 91, 062108 (2015)

    Article  ADS  Google Scholar 

  34. Lee, Y.C., Hsieh, M.H., Flammia, S.T., Lee, R.K.: Local PT-symmetry violates the no-signaling principle. Phys. Rev. Lett. 112, 130404 (2014)

    Article  ADS  Google Scholar 

  35. Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 15A015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Leng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, Y., Zhao, YH. Effect of PT-Symmetric Operator on Coherence Under the Non-Markovian Environments. Int J Theor Phys 58, 1874–1881 (2019). https://doi.org/10.1007/s10773-019-04082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04082-y

Keywords

Navigation