Skip to main content
Log in

Controlled Entanglement Diversion Using GHZ Type Entangled Coherent State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a scheme of controlled entanglement diversion of a bi-partite entangled coherent state using GHZ type entangled coherent state as a resource. The scheme involves only linear optical devices such as phase shifters, beam splitters and photon counters. Average fidelity of diversion is calculated and plotted. It is 2/3 for very small coherent amplitudes and approaches unity for appreciable coherent amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62 (1), 012313 (2000)

    Article  ADS  Google Scholar 

  5. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “event-ready-detectors” bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Article  ADS  Google Scholar 

  7. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575 (1997)

    Article  ADS  MATH  Google Scholar 

  8. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80(6), 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86(7), 1370 (2001)

    Article  ADS  Google Scholar 

  10. Prakash, H., Verma, V.: Quantum teleportation of single qubit mixed information state with werner-like state as resource. arXiv:1305.4259 (2013)

  11. Prakash, H., Maurya, A.K.: Quantum teleportation using entangled 3-qubit states and the magic bases. Opt. Commun. 284(20), 5024–5030 (2011)

    Article  ADS  Google Scholar 

  12. Verma, V., Prakash, H.: Standard quantum teleportation and controlled quantum teleportation of an arbitrary n-qubit information state. Int. J. Theor. Phys. 55(4), 2061–2070 (2016)

    Article  MATH  Google Scholar 

  13. Sisodia, M., Verma, V., Thapliyal, K., Pathak, A.: Teleportation of a qubit using entangled non-orthogonal states: a comparative study. Quantum Inf. Process 16 (3), 76 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hirota, O., Van Enk, S.J., Nakamura, K., Sohma, M., Kato, K.: Entangled nonorthogonal states and their decoherence properties. arXiv:quant-ph/0101096 (2001)

  15. Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49(2), 1473 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  16. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  ADS  Google Scholar 

  17. Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45(9), 6811 (1992)

    Article  ADS  Google Scholar 

  18. van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64(2), 022313 (2001)

    Article  ADS  Google Scholar 

  19. Wang, X.: Quantum teleportation of entangled coherent states. Phys. Rev. A 64 (2), 022302 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  20. Prakash, H., Chandra, N., Prakash, R., et al.: Improving the teleportation of entangled coherent states. Phys. Rev. A 75(4), 044305 (2007)

    Article  ADS  Google Scholar 

  21. Prakash, H., Chandra, N., Prakash, R., Shivani: Almost perfect teleportation using 4-partite entangled states. Int. J. Mod. Phys. B 24(17), 3383–3394 (2010)

    Article  ADS  MATH  Google Scholar 

  22. Prakash, H., Mishra, M.: Increase in average fidelity of quantum teleportation by decreasing entanglement. Proceedings of ICOP-2009, CSIO Chandigarh, India. Online available: http://csio. res. in 8085

  23. Mishra, M.K., Prakash, H.: Teleportation of a two-mode entangled coherent state encoded with two-qubit information. J. Phys. B: At., Mol. Opt. Phys. 43(18), 185501 (2010)

    Article  ADS  Google Scholar 

  24. Prakash, H., Chandra, N., Prakash, R., Shivani: Swapping between two pairs of nonorthogonal entangled coherent states. Int. J. Mod. Phys. B 23(08), 2083–2092 (2009)

    Article  ADS  MATH  Google Scholar 

  25. Prakash, H.: Quantum teleportation. In: International Conference on Emerging Trends in Electronic and Photonic Devices & Systems, 2009. ELECTRO’09, pp 18–23. IEEE (2009)

  26. Prakash, H., Chandra, N., Prakash, R., Kumar, S.A.: Entanglement diversion between two pairs of entangled coherent states: fidelity and decoherence. Int. J. Mod. Phys. B 23(04), 585–595 (2009)

    Article  ADS  MATH  Google Scholar 

  27. Prakash, H., Chandra, N., Prakash, R., Kumar, S.A.: Improving the entanglement diversion between two pairs of entangled coherent states. Int. J. Mod. Phys. B 24(17), 3331–3339 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. An, N.B., Kim, J.: Cluster-type entangled coherent states: generation and application. Phys. Rev. A 80(4), 042316 (2009)

    Article  ADS  Google Scholar 

  29. Sun, Y., Sun, B.J., Shi, M.L., Man, Z.X., Xia, Y.J.: Improving the teleportation of tripartite entangled coherent states in continuous variable. International Journal of Quantum Information 7(01), 313–321 (2009)

    Article  MATH  Google Scholar 

  30. Yong, S., Zhong-Xiao, M., Yun-Jie, X.: Continuous-variable quantum teleportation of entangled coherent states. Chin. Phys. Lett. 26(2), 020306 (2009)

    Article  Google Scholar 

  31. Liu, J.C., Li, Y.H., Nie, Y.Y.: Controlled teleportation of an ecs by using a four-mode ctecs. Int. J. Theor. Phys. 50(6), 1852–1857 (2011)

    Article  ADS  Google Scholar 

  32. Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80 (18), 3891 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57(2), 822 (1998)

    Article  ADS  Google Scholar 

  34. Polkinghorne, R., Ralph, T.: Continuous variable entanglement swapping. Phys. Rev. Lett. 83(11), 2095 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Parker, S., Bose, S., Plenio, M.: Entanglement quantification and purification in continuous-variable systems. Phys. Rev. A 61(3), 032305 (2000)

    Article  ADS  Google Scholar 

  36. Jia, X., Su, X., Pan, Q., Gao, J., Xie, C., Peng, K.: Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys. Rev. Lett. 93(25), 250503 (2004)

    Article  ADS  Google Scholar 

  37. Takei, N., Yonezawa, H., Aoki, T., Furusawa, A.: High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett. 94(22 ), 220502 (2005)

    Article  ADS  Google Scholar 

  38. Brask, J.B., Rigas, I., Polzik, E.S., Andersen, U.L., Sørensen, A.S.: Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett. 105(16), 160501 (2010)

    Article  ADS  Google Scholar 

  39. Takeda, S., Fuwa, M., van Loock, P., Furusawa, A.: Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114(10), 100501 (2015)

    Article  ADS  Google Scholar 

  40. Duan, L.M., Lukin, M., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413 (2001)

    Article  ADS  Google Scholar 

  41. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932 (1998)

    Article  ADS  Google Scholar 

  42. Sangouard, N., Simon, C., Gisin, N., Laurat, J., Tualle-Brouri, R., Grangier, P.: Quantum repeaters with entangled coherent states. JOSA B 27(6), A137–A145 (2010)

    Article  ADS  Google Scholar 

  43. Sangouard, N., Simon, C., De Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83(1), 33 (2011)

    Article  ADS  Google Scholar 

  44. Bose, S., Vedral, V., Knight, P.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60(1), 194 (1999)

    Article  ADS  Google Scholar 

  45. Sun, Q.C., Jiang, Y.F., Mao, Y.L., You, L.X., Zhang, W., Zhang, W.J., Jiang, X., Chen, T.Y., Li, H., Huang, Y.D., et al.: Entanglement swapping over 100 km optical fiber with independent entangled photon-pair sources. Optica 4 (10), 1214–1218 (2017)

    Article  Google Scholar 

  46. Xin-Hua, C., Jie-Rong, G., Jian-Jun, N., Jin-Ping, J.: Entanglement diversion and quantum teleportation of entangled coherent states. Chin. Phys. 15(3), 488 (2006)

    Article  ADS  Google Scholar 

  47. Dao-Hua, W., Ping, D., Ming, Y., Zhuo-Liang, C.: Controlled entanglement swapping for continuous variables. Commun. Theor. Phys. 49(4), 877 (2008)

    Article  ADS  MATH  Google Scholar 

  48. Jeong, H., An, N.B.: Greenberger-Horne-Zeilinger–type and w-type entangled coherent states: generation and bell-type inequality tests without photon counting. Phys. Rev. A 74(2), 022104 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  49. Dodonov, V., Malkin, I., Man’Ko, V.: Even and odd coherent states and excitations of a singular oscillator. Physica 72(3), 597–615 (1974)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

One of the authors R.K. Pandey is thankful to UGC for providing financial assistance under UGC - D.Phil. fellowship. Discussions with Dr. Devendra Kumar Mishra and Ms. Shamiya Javed is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kamal Pandey.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, R., Pandey, R.K. & Prakash, H. Controlled Entanglement Diversion Using GHZ Type Entangled Coherent State. Int J Theor Phys 58, 1227–1236 (2019). https://doi.org/10.1007/s10773-019-04014-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04014-w

Keywords

Navigation