Skip to main content
Log in

Noise Effects and Perfect Controlled Remote State Preparation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate how the efficiency is affected on the noise environments in the controlled remote state preparation protocol, where the several realistic scenarios, i.e., a part or all of the qubits are subjected to the same or different types of noise, are considered. We find that more noise or less entanglement of qubits environment lead to more efficiency in terms of average fidelity. We show that it is better way to subject the qubits in different noise channels in order to increase the fidelity of the controlled remote state preparation protocol. By using a non-maximally three-qubit pure entangled state as quantum channel, furthermore, we could realize a perfect controlled remote state preparation by choosing the right noisy environments and adjusting their relations in terms of noisy rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820–1823 (2016)

    Article  MATH  Google Scholar 

  3. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  5. Ber, R., Kenneth, O., Reznik, B.: Superoscillations underlying remote state preparation for relativistic fields. Phys. Rev. A. 91, 052312 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. Dakic, B., Lipp, Y.O., Ma, X.S., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)

    Article  Google Scholar 

  7. Giorgi, G.L.: Quantum discord and remote state preparation. Phys. Rev. A. 88, 022315 (2013)

    Article  ADS  Google Scholar 

  8. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A. 63, 014302 (2000)

    Article  ADS  Google Scholar 

  9. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  10. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A. 69, 022310 (2004)

    Article  ADS  Google Scholar 

  11. Paris, M.G.A., Cola, M.M., Bonifacio, R.: Remote state preparation and teleportation in phase space. J. Opt. B. 5, 360–364 (2003)

    Article  ADS  Google Scholar 

  12. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  13. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  14. Abeyesinghe, A., Hayden, P.: Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A. 68(062319), (2003)

  15. Spee, C., de Vicente, J.I., Kraus, B.: Remote entanglement preparation. Phys. Rev. A 88, 010305(R) (2013)

  16. Xu, Z.Y., Liu, C., Luo, S.L., Zhu, S.Q.: Non-Markovian effect on remote state preparation. Ann. Phys. 356, 29–36 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A. 306, 271–276 (2003)

    Article  ADS  Google Scholar 

  18. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  19. Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A. 72(012315), (2005)

  20. Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  21. Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A. 76, 022308 (2007)

    Article  ADS  Google Scholar 

  22. Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A. 81, 042301 (2010)

    Article  ADS  Google Scholar 

  23. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  24. Radmark, M., Wiesniak, M., Zukowski, M., Bourennane, M.: Experimental multilocation remote state preparation. Phys. Rev. A. 88, 032304 (2013)

    Article  ADS  Google Scholar 

  25. Zavatta, A., D’Angelo, M., Parigi, V., Bellini, M.: Remote preparation of arbitrary time-encoded single-photon ebits. Phys. Rev. Lett. 96, 020502 (2006)

    Article  ADS  MATH  Google Scholar 

  26. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B Atomic Mol. Phys. 40, 3719–3724 (2007)

    Article  ADS  Google Scholar 

  27. An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B Atomic Mol. Phys. 41, 095501 (2008)

    Article  ADS  Google Scholar 

  28. Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373–379 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Li, X.H., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14, 4585–4592 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Zhang, Z.H., Shu, L., Mo, Z.W., Zheng, J., Ma, Y.S., Luo, M.X.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 13, 1979–2005 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235–240 (2009)

    Article  ADS  MATH  Google Scholar 

  32. Chen, N., Quan, D.X., Yang, H., Pei, C.X.: Deterministic controlled remote state preparation using partially entangled quantum channel. Quantum Inf. Process. 15, 1719–1729 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Chen, X.B., Ma, S.Y., Yuan, S.Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11, 1653–1667 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13, 1639–1650 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077–1089 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. An, N.B., Bich, C.T.: Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A. 378, 3582–3585 (2014)

    Article  ADS  MATH  Google Scholar 

  37. Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223–3237 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14, 4263–4278 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Wang, Z.S., Wu, C.F., Feng, X.L., Kwek, L.C., Lai, C.H.: Oh, C.H.: effects of a squeezed-vacuum reservoir on geometric phase. Phys. Rev. A. 75, 024102 (2007)

    Article  ADS  Google Scholar 

  40. Li, C.F., Tang, J.S., Li, Y.L., Guo, G.C.: Experimentally witnessing the initial correlation between an open quantum system and its environment. Phys. Rev. A. 83, 064102 (2011)

    Article  ADS  Google Scholar 

  41. Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7, 931–934 (2011)

    Article  Google Scholar 

  42. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857–3877 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Taketani, B.G., deMelo, F., deMatos Filho, R.L.: Optimal teleportation with a noisy source. Phys. Rev. A 85, 020301(R) (2012)

  44. Bandyopadhyay, S., Ghosh, A.: Optimal fidelity for a quantum channel may be attained by nonmaximally entangled states. Phys. Rev. A 86, 020304(R) (2012)

  45. Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: An experimental study on the influence of local environments. Phys. Rev. A. 90, 042332 (2014)

    Article  ADS  Google Scholar 

  46. Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A. 92, 012338 (2015)

    Article  ADS  Google Scholar 

  47. Xu, X.M., Cheng, L.Y., Liu, A.P., Su, S.L., Wang, H.F., Zhang, S.: Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation. Quantum Inf. Process. 14, 4147–4162 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Uhlmann, A.: The “transition probability” in the state space of a*-algebra. Rep. Math. Phys. 9, 273–279 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Massar, S., Popescu, S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11764021, 11564018, 61765008, 11804133, 51567011), and the Research Foundation of the Education Department of Jiangxi Province (No. GJJ150339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-hua Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Bit-flip noise

The bit-flip noise changes a qubit state from ∣0〉 to ∣1〉 or from ∣1〉 to ∣0〉 with a probability p and is frequently used in the theory of quantum-error correction. The associated Kraus operators are given by

$$ {E}_1=\left(\begin{array}{cc}\sqrt{1-p}& 0\\ {}0& \sqrt{1-p}\end{array}\right),{E}_2=\left(\begin{array}{cc}0& \sqrt{p}\\ {}\sqrt{p}& 0\end{array}\right). $$
(63)

1.2 Amplitude-damping noise

The amplitude-damping noise channel allows us to describe the decay of a two-level system due to spontaneous emission of a phonon. This process is accompanied with the loss of energy and can be described by the Kraus operators,

$$ {E}_1=\left(\begin{array}{cc}1& 0\\ {}0& \sqrt{1-p}\end{array}\right),{E}_2=\left(\begin{array}{cc}0& \sqrt{p}\\ {}0& 0\end{array}\right). $$
(64)

The quantity p is regarded as a decay probability from the excited to the ground state for a two-level system.

1.3 Phase-flip noise

The phase-flip noise channel has no classical analog because it describes the loss of quantum information without loss of energy. The quantum information corresponding to the ability of a system to produce quantum interferences hence is described by the off-diagonal elements of a density matrix. Phase-flip map can be occurred in the phase kicks or scattering processes. Such a channel can be modeled by the following Kraus operators,

$$ {E}_1=\left(\begin{array}{cc}\sqrt{1-p}& 0\\ {}0& \sqrt{1-p}\end{array}\right),{E}_2=\left(\begin{array}{cc}\sqrt{p}& 0\\ {}0& -\sqrt{p}\end{array}\right). $$
(65)

1.4 Depolarizing noise

The depolarizing noise channel is a decoherent model. The Kraus operators including all possible decay ways for the depolarizing channel are given by

$$ {\displaystyle \begin{array}{l}{E}_1=\left(\begin{array}{cc}\sqrt{1-3p/4}& 0\\ {}0& \sqrt{1-3p/4}\end{array}\right),{E}_2=\left(\begin{array}{cc}0& \sqrt{p/4}\\ {}\sqrt{p/4}& 0\end{array}\right){\sigma}_x,{E}_3=\left(\begin{array}{cc}0& -i\sqrt{p/4}\\ {}i\sqrt{p/4}& 0\end{array}\right),\\ {}{E}_4=\left(\begin{array}{cc}\sqrt{p/4}& 0\\ {}0& -\sqrt{p/4}\end{array}\right).\end{array}} $$
(66)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yh., Wang, Zs., Zhou, Hq. et al. Noise Effects and Perfect Controlled Remote State Preparation. Int J Theor Phys 58, 1172–1194 (2019). https://doi.org/10.1007/s10773-019-04010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04010-0

Keywords

PACS

Navigation