Skip to main content
Log in

Quantum Cyclic Codes Over \( {\mathbb{Z}}_m \)

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum codes over finite rings have the advantage of being able to adapt to quantum physical systems with arbitrary order. Furthermore, operations are much easier to execute in finite rings than they are in fields. This paper discusses quantum cyclic codes over the modulo m residue class ring \( {\mathbb{Z}}_m \). A connection is established between the stabilizer codes over \( {\mathbb{Z}}_m \) and the additive codes over an extension ring of \( {\mathbb{Z}}_m \) that generalizes the well-known relationship between the stabilizer codes over \( {\mathbb{F}}_q \) and the additive codes over \( {\mathbb{F}}_{q^2} \). We prove that if the irreducible polynomial is selected according to a simple criterion, the additive codes which are self-orthogonal with respect to the conjugate inner product correspond to the stabilizer codes. The structure of cyclic stabilizer codes is developed, and some simple conditions for finding them are presented. We also define the quantum Bose-Chaudhuri-Hocquenghem (BCH) and quantum Reed-Solomon (RS) codes over \( {\mathbb{Z}}_m \). Finally, new quantum cyclic codes over \( {\mathbb{Z}}_m \) are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, 2493–2496 (1995)

    Article  ADS  Google Scholar 

  2. Calderbank, A.R., Shor, P.W.: Good quantum error correction codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  3. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over G F(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grassl, M., Beth, T.: Quantum BCH codes. Quantum Physics 10, 207–212 (1999)

    Google Scholar 

  7. Li, R., Li, X.: Quantum codes constructed from binary cyclic codes. Int. J. Quantum Inf. 2, 265–272 (2004)

    Article  MATH  Google Scholar 

  8. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: Primitive quantum BCH codes over finite fields. Proc. Int. Symp. Inf. Theory, 1114–1118 (2006)

  9. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE. Trans. Inf. Theory 53, 1183–1188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guardia, G.G.: Constructions of new families of nonbinary quantum codes. Phys. Rev. A 80, 042331 (2009)

    Article  ADS  Google Scholar 

  11. Kai, X., Zhu, S.: Quantum negacyclic codes. Phys. Rev. A 88, 012326 (2013)

    Article  ADS  Google Scholar 

  12. Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61, 1474–1484 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14, 881–889 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zhang, T., Ge, G.: Some new class of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61, 5224–5228 (2015)

    Article  ADS  MATH  Google Scholar 

  15. Guardia, G.G.: New quantum MDS codes. IEEE Trans. Inf. Theory 57, 5551–5554 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Qian, J., Ma, W., Gou, W.: Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inf. 7, 1277–1283 (2009)

    Article  MATH  Google Scholar 

  17. Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \( {\mathbb{F}}_q+u{\mathbb{F}}_q+v{\mathbb{F}}_q+ uv{\mathbb{F}}_q \). Quantum Inf. Process. 15, 4089–4098 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gao, J., Wang, Y.: u-Constacyclic codes over \( {\mathbb{F}}_p+u{\mathbb{F}}_p \) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. (2018)

  19. Liu, X., Liu, H.: Quantum codes from linear codes over finite chain rings. Quantum Inf. Process. https://doi.org/10.1007/s11128-017-1695-7 (2017)

  20. Qian, J., Zhang, L.: Improved constructions for nonbinary quantum BCH codes. Int. J. Theor. Phys. 56, 1355–1363 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang, Y., Zhu, S., Kai, X., Ding, J.: New quantum codes from dual-containing cyclic codes over finite rings. Quantum Inf. process. 15(11), 4489–4500 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Norton, G.H., Salagean, A.: On the hamming distance of linear codes over a finite chain ring. IEEE Trans. Inf. Theory 46, 1060–1067 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Artin, M.: Algebra, 2nd edn. Pearson Education, London (2011)

    MATH  Google Scholar 

  24. McDonald, B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974)

    MATH  Google Scholar 

  25. Wan, Z.X.: Lectures on finite fields and galois rings. World Science Publishing, Singapore (2003)

    Book  MATH  Google Scholar 

  26. Nadella, S., Klappenecker, A.: Stabilizer codes over Frobenius rings. In: Proceedings of IEEE Symposium and Information Theory (2012)

  27. Norton, G.H., Salagean, A.: On the structure of linear and cyclic codes over a finite chain ring. Applicable Alg. Eng. Commun. Comput. 10 (2000)

  28. Shankar, P.: On BCH codes over arbitrary integer rings. IEEE Trans. Inf. Theory 25 (1979)

  29. Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual-containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 12, 0021–0035 (2013)

    MathSciNet  Google Scholar 

  30. Qian, J., Zhang, L.: Improved construction for nonbinary quantum BCH codes. Int. J. Theor. Phys. 56, 1355–1363 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Natural Science Foundation of China (grant 61372072), and in part by the 111 Project(grant B08038).

Appendix

Appendix

1.1 Proof of Lemma 2

For two elements a + bx, c + dx in Qi, we have

$$ {\sigma}_i\left(a+ bx+c+ dx\right)=a+b{x}^{p_i}+c+d{x}^{p_i}={\sigma}_i\left(a+ bx\right)+{\sigma}_i\left(c+ dx\right),\kern1.00em $$

and

$$ {\sigma}_i\left(\left(a+ bx\right)\left(c+ dx\right)\right)= ac+ ad{x}^{p_i}+ bc{x}^{p_i}+ bd{x}^{2{p}_i}={\sigma}_i\left(a+ bx\right){\sigma}_i\left(c+ dx\right).\kern1.00em $$

Thus, σi is compatible with addition and multiplication in Qi. Moreover, one has σi(1) = 1. It follows that σi is a homomorphism from Qi to Qi. Since the kernel of σi is trivial, we conclude that Qi is an automorphism of Qi.

1.2 Proof of Lemma 3

For \( \mathbf{u},\mathbf{w},{\mathbf{u}}^{\prime}\in {Q}_i^n \), it is easy to verify that \( <\mathbf{u},\mathbf{w}{>}_{s_i}=-<\mathbf{w},\mathbf{u}{>}_{s_i} \). Then we know \( <\mathbf{u},\mathbf{u}{>}_{s_i}=-<\mathbf{u},\mathbf{u}{>}_{s_i} \) and \( <\mathbf{u},\mathbf{u}{>}_{s_i}=0 \). Furthermore, we have

$$ <\mathbf{u}+{\mathbf{u}}^{\prime },\mathbf{w}{>}_{s_i}=\frac{\left(\mathbf{u}+{\mathbf{u}}^{\prime}\right)\cdot {\sigma}_i\left(\mathbf{w}\right)-{\sigma}_i\left(\mathbf{u}+{\mathbf{u}}^{\prime}\right)\cdot \mathbf{w}}{x-{x}^{p_i}} $$
$$ =\frac{\mathbf{u}\cdot {\sigma}_i\left(\mathbf{w}\right)-{\sigma}_i\left(\mathbf{u}\right)\cdot \mathbf{w}}{x-{x}^{p_i}}+\frac{{\mathbf{u}}^{\prime}\cdot {\sigma}_i\left(\mathbf{w}\right)-{\sigma}_i\left({\mathbf{u}}^{\prime}\right)\cdot \mathbf{w}}{x-{x}^{p_i}}=<\mathbf{u},\mathbf{w}{>}_{s_i}+<{\mathbf{u}}^{\prime },\mathbf{w}{>}_{s_i}, $$

which means the bilinearity holds. Hence, we can deduce that \( {\left\langle \kern1em ,\kern1em \right\rangle}_{s_i} \) is a symplectic form. On the other hand, if we ignore the scalar, the matrix of the form with respect to the standard symplectic basis is equivalent to \( \left(\begin{array}{ll}0& I\\ {}-I& 0\end{array}\right) \). It follows that the form \( {\left\langle \kern1em ,\kern1em \right\rangle}_{s_i} \) is non-degenerate. The claim holds.

1.3 Proof of Lemma 4

For two vectors a = (a1a2), \( \mathbf{b}=\left({\mathbf{b}}_1|{\mathbf{b}}_2\right)\in {R}_i^{2n} \), we have

$$ \psi \left(\mathbf{a}\right)\cdot {\sigma}_i\left(\psi \left(\mathbf{b}\right)\right)=\left({\mathbf{a}}_1+{\mathbf{a}}_2x\right)\cdot \left({\mathbf{b}}_1+{\mathbf{b}}_2{x}^{p_i}\right)={\mathbf{a}}_1\cdot {\mathbf{b}}_1+{\mathbf{a}}_1\cdot {\mathbf{b}}_2{x}^{p_i}+{\mathbf{a}}_2\cdot {\mathbf{b}}_1x+{\mathbf{a}}_2\cdot {\mathbf{b}}_2{x}^{p_i+1}, $$

and

$$ {\sigma}_i\left(\psi \left(\mathbf{a}\right)\right)\ast \psi \left(\mathbf{b}\right)=\left({\mathbf{a}}_1+{\mathbf{a}}_2{x}^{p_i}\right)\cdot \left({\mathbf{b}}_1+{\mathbf{b}}_2x\right)={\mathbf{a}}_1\cdot {\mathbf{b}}_1+{\mathbf{a}}_2\cdot {\mathbf{b}}_1{x}^{p_i}+{\mathbf{a}}_1\cdot {\mathbf{b}}_2x+{\mathbf{a}}_2\cdot {\mathbf{b}}_2{x}^{p_i+1}. $$

Thus, it follows that \( {\left\langle \psi \left(\mathbf{a}\right)\kern1em ,\psi \left(\mathbf{b}\right)\right\rangle}_{s_i}=\left({\mathbf{a}}_2\cdot {\mathbf{b}}_1-{\mathbf{a}}_1\cdot {\mathbf{b}}_2\right)={\left\langle \mathbf{a}\kern1em ,\mathbf{b}\right\rangle}_a \).

1.4 Proof of Lemma 6

For a, bQ, we assume that \( \mu (a)=\left({a}_1,\dots, {a}_l\right),\kern1em \mu (b)=\left({b}_1,\dots, {b}_l\right) \), where ai, biQi for \( i=1,\dots, l \). Then

$$ \sigma \left(a+b\right)={\mu}^{-1}\left({\sigma}_1\left({a}_1+{b}_1\right),\dots, {\sigma}_l\left({a}_l+{b}_l\right)\right) $$
$$ ={\mu}^{-1}\left({\sigma}_1\left({a}_1\right),\dots, {\sigma}_l\left({a}_l\right)\right)+{\mu}^{-1}\left({\sigma}_1\left({b}_1\right),\dots, {\sigma}_l\left({b}_l\right)\right)=\sigma (a)+\sigma (b), $$

and

$$ \sigma \left(\mathrm{ab}\right)={\mu}^{-1}\left({\sigma}_1\left({a}_1{b}_1\right),\dots, {\sigma}_l\left({a}_l{b}_l\right)\right)={\mu}^{-1}\left({\sigma}_1\left({a}_1\right){\sigma}_1\left({b}_1\right),\dots, {\sigma}_l\left({a}_l\right){\sigma}_l\left({b}_l\right)\right) $$
$$ ={\mu}^{-1}\left({\sigma}_1\left({a}_1\right),\dots, {\sigma}_l\left({a}_l\right)\right){\mu}^{-1}\left({\sigma}_1\left({b}_1\right),\dots, {\sigma}_l\left({b}_l\right)\right)=\sigma (a)\sigma (b). $$

Therefore, σ is compatible with addition and multiplication in Q. Moreover, we have σ(1) = 1. It follows that σ is a homomorphism from Q to Q. Because the kernel of σ is trivial, we conclude that σ is an automorphism of Q.

1.5 Proof of Lemma 9

Suppose that u = a + bx, w = c + dx, where \( \mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}\in {R}_i^n \). If pi = 2, we have x2 = −x − 1 in Qi. There is

$$ {\displaystyle \begin{array}{rcl}\mathbf{u}\cdot \sigma \left(\mathbf{w}\right)& =& \left(\mathbf{a}+\mathbf{b}x\right)\cdot \left(\mathbf{c}+\mathbf{d}{x}^2\right)=\mathbf{a}\cdot \mathbf{c}+\mathbf{a}\cdot \mathbf{d}{x}^2+\mathbf{b}\cdot \mathbf{c}x+\mathbf{b}\cdot \mathbf{d}{x}^3\\ {}& =& \mathbf{a}\cdot \mathbf{c}-\mathbf{a}\cdot \mathbf{d}+\mathbf{b}\cdot \mathbf{d}+\left(\mathbf{b}\cdot \mathbf{c}-\mathbf{a}\cdot \mathbf{d}\right)x.\end{array}} $$

Therefore, if uσi(w) equals 0, we must have bcad = 0, which is equivalent to \( {\left\langle \mathbf{u}\kern1em ,\mathbf{w}\right\rangle}_{s_i}=0 \) according to Lemma 4.

Conversely, if pi ≠ 2, we know that x2 = a in Qi. There is

$$ \mathbf{u}\cdot {\sigma}_i\left(\mathbf{w}\right)=\left(\mathbf{a}+\mathbf{b}x\right)\cdot \left(\mathbf{c}+\mathbf{d}{x}^{p_i}\right)=\left(\mathbf{a}+\mathbf{b}x\right)\cdot \left(\mathbf{c}-\mathbf{d}x\right)=\mathbf{a}\cdot \mathbf{c}-\mathbf{a}\cdot \mathbf{d}x+\mathbf{b}\cdot \mathbf{c}x-\mathbf{b}\cdot \mathbf{d}{x}^2 $$
$$ =\mathbf{a}\cdot \mathbf{c}-a\mathbf{b}\cdot \mathbf{d}+\left(\mathbf{b}\cdot \mathbf{c}-\mathbf{a}\cdot \mathbf{d}\right)x. $$

Thus, if uσi(w) equals 0, we must have bcad = 0, which is equivalent to \( {\left\langle \mathbf{u}\kern1em ,\mathbf{w}\right\rangle}_{s_i}=0 \) according to Lemma 4. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, N., Li, Z., Xing, L. et al. Quantum Cyclic Codes Over \( {\mathbb{Z}}_m \). Int J Theor Phys 58, 1088–1107 (2019). https://doi.org/10.1007/s10773-019-04000-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04000-2

Keywords

Navigation