Skip to main content
Log in

Polarization-Multiplexed Quadrature Amplitude Modulation for Continuous-Variable Quantum Key Distribution

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a continuous-variable quantum key distribution (CV-QKD) scheme by using polarization-multiplexing (Pol-Mux) technique. As an effective way to promote spectral efficiency, quadrature amplitude modulation (QAM) has ability to provide substantial capacity. However, it may encounter the problem when discriminated symbols with increasing d. The star-QAM with different ring radii is utilized to tolerate greater phase jitter and improve the stability. In the proposed scheme, an optical phase reference signal is multiplexed to the quantum signal through the optical fiber to provide phase reference for local oscillator signal, which enables secure key distribution. However, the quadrature amplitude modulation could obtain the high modulation efficiency at the cost of increased complexity. And we utilize the low-density parity-check (LDPC) codes with little computational cost reconciliation scheme to deal with the extra data. From the numerical results, the proposed scheme achieves a good performance in terms of the key generation rate. The secure bound is derived with the presence of a Gaussian channel and the analysis shows the performance of the proposed scheme can be further improved by altering the effective parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8(8), 595–604 (2014)

    Article  ADS  Google Scholar 

  2. Samuel, L.B., Peter, V.L.: Quantum information with continuous variables. Rev. Mod. Phys. 77(7), 513–577 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Tamaki, K., Koashi, M., Imoto, N.: Unconditionally secure key distribution based on two nonorthogonal states. Phys. Rev. Lett. 90(16), 167904 (2003)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India. New York, pp. 175–179 (1984)

  5. Lance, A.M., Symul, T., Sharma, V., Weedbrook, C., Ralph, T.C., Lam, P.K.: No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 95(18), 180503 (2005)

    Article  ADS  Google Scholar 

  6. Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)

    Article  ADS  Google Scholar 

  7. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon 4(10), 686–689 (2010)

    Article  ADS  Google Scholar 

  8. Huang, P., He, G., Fang, J., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87 (1), 530–537 (2013)

    Article  Google Scholar 

  9. Hu, L., Liao, Z., Zubairy, M.S.: Continuous-variable entanglement via multiphoton catalysis. Phys. Rev. A 95(1), 012310 (2017)

    Article  ADS  Google Scholar 

  10. Guo, Y., Shi, R.H., Zeng, G.H.: Secure networking quantum key distribution schemes with Greenberger–Horne–Zeilinger states. Phys. Scr. 81(4), 045006 (2010)

    Article  ADS  MATH  Google Scholar 

  11. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  12. Pirandola, S., Mancini, S., Lloyd, S., Braunstein, S.L.: Continuous variable quantum cryptography using two-way quantum communication. Nat. Phys. 4 (9), 726–730 (2006)

    Article  Google Scholar 

  13. Zhang, H., Fang, J., He, G.: Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers. Phys. Rev. A 86(2), 022338 (2012)

    Article  ADS  Google Scholar 

  14. Fang, J., Huang, P., Zeng, G.H.: Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation. Phys. Rev. A 89(2), 022315 (2014)

    Article  ADS  Google Scholar 

  15. Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 76(5), 052323 (2007)

    Article  ADS  Google Scholar 

  16. Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography. Phys. Rev. Lett. 101(20), 200504 (2008)

    Article  ADS  Google Scholar 

  17. Guo, Y., Xie, C., Liao, Q., Zhao, W., Zeng, G., Huang, D.: Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel. Phys. Rev. A 96(2), 022320 (2017)

    Article  ADS  Google Scholar 

  18. Jing, J., Zhang, J., Yan, Y., Zhao, F., Xie, C., Peng, K.: Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett. 90(16), 167903 (2003)

    Article  ADS  Google Scholar 

  19. Guo, Y., Liao, Q., Huang, D., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A 95(3), 042326 (2017)

    Article  ADS  Google Scholar 

  20. Xuan, Q.D., Zhang, Z., Voss, P.L.: A 24 km fiber-based discretely signaled continuous variable quantum key distribution system. Opt. Express 17(26), 24244 (2009)

    Article  ADS  Google Scholar 

  21. Qi, B., Lougovski, P., Pooser, R., Grice, W., Bobrek, M.: Generating the local oscillator ”locally” in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X 5(4), 041009 (2015)

    Google Scholar 

  22. Huang, D., Huang, P., Lin, D., Wang, C., Zeng, G.H.: High-speed continuous-variable quantum key distribution without sending a local oscillator. Opt. Lett. 40(16), 3695–3698 (2015)

    Article  ADS  Google Scholar 

  23. Kumar, R., Qin, H., Alléaume, R.: Coexistence of continuous variable QKD with intense DWDM classical channels. New. J. Phys. 17(4), 043027 (2015)

    Article  ADS  Google Scholar 

  24. Lin, D., Huang, D., Huang, P., Zeng, G.H.: High performance reconciliation for continuous-variable quantum key distribution with LDPC code. Int. J. Quantum. Inf. 13(2), 1550010 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhuang, Q., Zhang, Z., Dove, J., Wong, F.N.C., Shapiro, J.H.: Floodlight quantum key distribution: A practical route to gigabit-per-second secret-key rates. Phys. Rev. A 94(1), 012322 (2016)

    Article  ADS  Google Scholar 

  26. Huang, P., Lin, D.K., Huang, D., Zeng, G.H.: Security of continuous-variable quantum key distribution with imperfect phase compensation. Int. J. Theor. Phys. 54 (8), 2613–2622 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Corvaja, R.: Phase-noise limitations in continuous-variable quantum key distribution with homodyne detection. Phys. Rev. A 95(2), 022315 (2017)

    Article  ADS  Google Scholar 

  28. Martinez-Mateo, J., Pacher, C., Peev, M., Ciurana, A., Martin, V.: Demystifying the information reconciliation protocol cascade. Quantum Inf. Comput. 15(5-6), 453–477 (2014)

    Google Scholar 

  29. Chu, T., Jiang, X.Q., Hou, J., Wang, H.M., Kong, L.: Construction of multiple-rate LDPC codes using modified PEG. Proc. Int. Conf. Wireless Commun. Signal Processing. Nanjing, pp. 1–5 (2017)

  30. Jiang, X.Q., Huang, P., Huang, D., Lin, D., Zeng, G.H.: Secret information reconciliation based on punctured low-density parity-check codes for continuous-variable quantum key distribution. Phys. Rev. A 95(2), 022318 (2017)

    Article  ADS  Google Scholar 

  31. Jiang, X.Q., Zheng, Y., Chen, W., Wen, M., Li, J.: Two-layer LDPC codes for low complexity ML detection in GSM systems. IEEE Trans. Wirel. Commun. 7(3), 408–411 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61379153, 61572529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wang, X., Zhang, L. et al. Polarization-Multiplexed Quadrature Amplitude Modulation for Continuous-Variable Quantum Key Distribution. Int J Theor Phys 58, 209–220 (2019). https://doi.org/10.1007/s10773-018-3924-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3924-y

Keywords

Navigation