Skip to main content
Log in

A Model for Immune Noise Towards High-Fidelity Quantum Secure Communication

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we examine unified framework of high-fidelity entangled quantum secure Communication channels under noise. We adopt system evolution density matrix to calculate the individual and average fidelity of initial states. We adjust intensity levels of noise with respect to the surroundings. Based on quantum entanglement and unitary transformation, we develop and implement a model for four types of noise that act on the quantum bits at different intensity levels. We analyze the model with quantum bits produced against the immune noise based on density matrix. Our propose model for immune noise is not only efficient and robust, but also achieves high-fidelity for secure quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Huang, C.C., Farn, K.J.: A study on E-Taiwan promotion information security governance programs with E-government implementation of information security management standardization. Intern. J. Netw. Secur. 18(3), 565–578 (2016)

    Google Scholar 

  2. Safa, N.S., Solms, R.V., Furnell, S.: Information security policy compliance model in organizations. Comput. Secur. 56(1), 70–82 (2016)

    Article  Google Scholar 

  3. DiVincenzo, D.P.: Quantum computation. Science 270(5234), 255–261 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H.: Quantum information and computation. Phys. Today 48, 24–30 (1995)

    Article  Google Scholar 

  5. Lidar, D.A., Bacon, D., Whaley, K.B.: Concatenating decoherence-free subspaces with quantum error correcting codes. Phys. Rev. Lett. 82(22), 4556–4559 (1999)

    Article  ADS  Google Scholar 

  6. Chen, D.J., Qin, Z., Mao, X.F., Yang, P.L., Qin, Z.G., Wang, R.J., Smoke, G.: An efficient key generation protocol with artificial interference. IEEE Trans. Inf. Forensics Secur. 8(11), 1731–1745 (2013)

    Article  Google Scholar 

  7. Yu, T., Beverly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93(14), 140404 (2004)

    Article  ADS  Google Scholar 

  8. Almeida, M.P., Melo, F., HorMeyll, M., Salles, A., Walborn, S.P., SoutoRibeiro, P.H., Davidovich, L.: Environment-induced sudden death of entanglement. Science 316(5824), 579–582 (2007)

    Article  ADS  Google Scholar 

  9. Adesso, G., Serafini, A., Illuminati, F.: Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence. Phys. Rev. A 73(3), 032345 (2006)

    Article  ADS  Google Scholar 

  10. Siomau, M., Fritzsche, S.: Entanglement dynamics of three-qubit states in noisy channels. Eur. Phys. J. D 60(2), 397–403 (2010)

    Article  ADS  Google Scholar 

  11. Siomau, M.: Entanglement dynamics of three-qubit states in local many-sided noisy channels. J. Phys. B Atomic Mol. Phys. 45(3), 035501 (2012)

    Article  ADS  Google Scholar 

  12. Wang, R.J., Li, D.F., Qin, Z.G.: An immune quantum communication model for dephasing noise using four-qubit cluster state. Int. J. Theor. Phys. 55(1), 609–616 (2015)

    Article  MATH  Google Scholar 

  13. Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86(4), 1203 (2014)

    Article  ADS  Google Scholar 

  14. Mazhar, A.: Robustness of genuine tripartite entanglement under collective dephasing. Chin. Phys. Lett. 32(6), 060302 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Fundamental Research Funds for the Central Universities (ZYGX2014J051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-fen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Df., Liu, Mz., Chen, Jl. et al. A Model for Immune Noise Towards High-Fidelity Quantum Secure Communication. Int J Theor Phys 58, 201–208 (2019). https://doi.org/10.1007/s10773-018-3923-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3923-z

Keywords

Navigation